Hugo J. B. Marroux, Serhii Polishchuk, O. Cannelli, R. Ingle, Giulia F. Mancini, Camila Bacellar, Michele Puppin, R. Géneaux, G. Knopp, L. Foglia, E. Pedersoli, F. Capotondi, Ivaylo Nikolov, F. Bencivenga, R. Mincigrucci, Claudio Masciovecchio, Majed Chergui
{"title":"Separation of kinetic rate orders in extreme ultraviolet transient grating spectroscopy","authors":"Hugo J. B. Marroux, Serhii Polishchuk, O. Cannelli, R. Ingle, Giulia F. Mancini, Camila Bacellar, Michele Puppin, R. Géneaux, G. Knopp, L. Foglia, E. Pedersoli, F. Capotondi, Ivaylo Nikolov, F. Bencivenga, R. Mincigrucci, Claudio Masciovecchio, Majed Chergui","doi":"10.1088/1361-6455/ad421f","DOIUrl":null,"url":null,"abstract":"\n We present an Extreme Ultraviolet (EUV) transient grating (TG) experiment of the spinel Co3O4 compound using tuneable incident energies across the Co M2,3-edge and a 395 nm probe pulse, detecting both the first and the second diffraction orders. While the first diffraction order shows a monotonous behaviour as a function of time, with a sharp response at t=0, followed by a weak sub-picosecond component and a nearly constant signal thereafter, the time dependence of second diffraction order varies dramatically with the incident energy as it is tuned across the Co M-edge, with the appearance of a component at t>1 ps that grows with increasing energy. The results are rationalised in terms of the deviations of the initial grating from sinusoidal to non-sinusoidal, namely a flattening of the grating pattern, that introduces new Fourier components. These deviations are due to higher order, three-body terms in the population relaxation kinetics. These results highlight the use of the response of the second diffraction order in EUV TG as a tool to identify higher order terms in the population kinetics.","PeriodicalId":16826,"journal":{"name":"Journal of Physics B: Atomic, Molecular and Optical Physics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics B: Atomic, Molecular and Optical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6455/ad421f","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
We present an Extreme Ultraviolet (EUV) transient grating (TG) experiment of the spinel Co3O4 compound using tuneable incident energies across the Co M2,3-edge and a 395 nm probe pulse, detecting both the first and the second diffraction orders. While the first diffraction order shows a monotonous behaviour as a function of time, with a sharp response at t=0, followed by a weak sub-picosecond component and a nearly constant signal thereafter, the time dependence of second diffraction order varies dramatically with the incident energy as it is tuned across the Co M-edge, with the appearance of a component at t>1 ps that grows with increasing energy. The results are rationalised in terms of the deviations of the initial grating from sinusoidal to non-sinusoidal, namely a flattening of the grating pattern, that introduces new Fourier components. These deviations are due to higher order, three-body terms in the population relaxation kinetics. These results highlight the use of the response of the second diffraction order in EUV TG as a tool to identify higher order terms in the population kinetics.
期刊介绍:
Published twice-monthly (24 issues per year), Journal of Physics B: Atomic, Molecular and Optical Physics covers the study of atoms, ions, molecules and clusters, and their structure and interactions with particles, photons or fields. The journal also publishes articles dealing with those aspects of spectroscopy, quantum optics and non-linear optics, laser physics, astrophysics, plasma physics, chemical physics, optical cooling and trapping and other investigations where the objects of study are the elementary atomic, ionic or molecular properties of processes.