M. Waqar, Asad Majeed Khan, Naeem Mubarak, Rabeel Khan, Farwa Shaheen, Afshan Shabbir
{"title":"Advanced Polymers and Recent Advancements on Gastroretentive Drug Delivery System; A Comprehensive Review.","authors":"M. Waqar, Asad Majeed Khan, Naeem Mubarak, Rabeel Khan, Farwa Shaheen, Afshan Shabbir","doi":"10.1080/1061186X.2024.2347366","DOIUrl":null,"url":null,"abstract":"Oral route of drug administration is typically the initial option for drug administration because it is both practical and affordable. However, major drawback of this route includes the release of drug at a specified place thus reduces the bioavailability. This could be overcome by utilizing the gastroretentive drug delivery system (GRRDS). Prolonged stomach retention improves bioavailability and increases solubility for medicines that are unable to dissolve in high pH environments. Many recent advancements in the floating, bio adhesive, magnetic, expandable, raft forming and ion exchange systems have been made that had led towards advanced form of drug delivery. From the past few years, floating drug delivery system has been most commonly utilized for the delivery of drug in a delayed manner. Various polymers have been utilized for manufacturing of these systems, including alginates, chitosan, pectin, carrageenan's, xanthan gum, hydroxypropyl cellulose, carbomer, polyethylene oxide and sodium carboxy methyl cellulose. Chitosan, pectin and xanthan gum have been found to be most commonly used polymers in the manufacturing of drug inclusion complex for gastroretentive drug delivery. This study aimed to define various types and advanced polymers as well as also highlights recent advances and future perspectives of gastroretentive drug delivery system.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"120 17","pages":"1-33"},"PeriodicalIF":5.5000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1061186X.2024.2347366","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Oral route of drug administration is typically the initial option for drug administration because it is both practical and affordable. However, major drawback of this route includes the release of drug at a specified place thus reduces the bioavailability. This could be overcome by utilizing the gastroretentive drug delivery system (GRRDS). Prolonged stomach retention improves bioavailability and increases solubility for medicines that are unable to dissolve in high pH environments. Many recent advancements in the floating, bio adhesive, magnetic, expandable, raft forming and ion exchange systems have been made that had led towards advanced form of drug delivery. From the past few years, floating drug delivery system has been most commonly utilized for the delivery of drug in a delayed manner. Various polymers have been utilized for manufacturing of these systems, including alginates, chitosan, pectin, carrageenan's, xanthan gum, hydroxypropyl cellulose, carbomer, polyethylene oxide and sodium carboxy methyl cellulose. Chitosan, pectin and xanthan gum have been found to be most commonly used polymers in the manufacturing of drug inclusion complex for gastroretentive drug delivery. This study aimed to define various types and advanced polymers as well as also highlights recent advances and future perspectives of gastroretentive drug delivery system.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.