Laboratory study of rotationally inelastic collisions of CO2 at low temperatures.

C. Álvarez, G. Tejeda, J. M. Fernández
{"title":"Laboratory study of rotationally inelastic collisions of CO2 at low temperatures.","authors":"C. Álvarez, G. Tejeda, J. M. Fernández","doi":"10.1063/5.0202588","DOIUrl":null,"url":null,"abstract":"The rotational relaxation of CO2 by inelastic collisions has been studied in three supersonic jets. The jets were probed by means of Raman spectroscopy with high spectral and spatial resolutions, measuring the rotational populations and the total number density. The time evolution of the rotational populations was analyzed by means of a kinetic master equation, with the help of the energy-corrected sudden power law to relate the numerous state-to-state rate (STS rates) coefficients. In the thermal range investigated, 60-260 K, the STS rates decrease with increasing temperature and with increasing change in the rotational quantum number. Other quantities of interest for fluid dynamics, such as the rotational collision number, the relaxation cross section, and the bulk viscosity, have been derived from the STS rates.","PeriodicalId":501648,"journal":{"name":"The Journal of Chemical Physics","volume":"101 26","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Chemical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0202588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rotational relaxation of CO2 by inelastic collisions has been studied in three supersonic jets. The jets were probed by means of Raman spectroscopy with high spectral and spatial resolutions, measuring the rotational populations and the total number density. The time evolution of the rotational populations was analyzed by means of a kinetic master equation, with the help of the energy-corrected sudden power law to relate the numerous state-to-state rate (STS rates) coefficients. In the thermal range investigated, 60-260 K, the STS rates decrease with increasing temperature and with increasing change in the rotational quantum number. Other quantities of interest for fluid dynamics, such as the rotational collision number, the relaxation cross section, and the bulk viscosity, have been derived from the STS rates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低温下二氧化碳旋转非弹性碰撞的实验室研究。
在三个超音速喷流中研究了非弹性碰撞导致的二氧化碳旋转弛豫。通过高光谱和高空间分辨率的拉曼光谱对喷流进行了探测,测量了旋转群和总数量密度。通过动力学主方程分析了旋转群的时间演化,并借助能量校正突变幂律将众多状态-状态速率(STS速率)系数联系起来。在所研究的温度范围(60-260 K)内,STS 率随着温度的升高和旋转量子数的变化而降低。从 STS 速率还可以推导出流体动力学的其他相关量,如旋转碰撞数、弛豫截面和体积粘度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Substitutional Cu doping at the cation sites in Ba2YNbO6 toward improved visible-light photoactivity—A first-principles HSE06 study GW with hybrid functionals for large molecular systems Classical and quantum thermodynamics in a non-equilibrium regime: Application to thermostatic Stirling engine Thermodynamic quantum Fokker–Planck equations and their application to thermostatic Stirling engine The “simple” photochemistry of thiophene
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1