Puttybot: A sensorized robot for autonomous putty plastering

IF 4.2 2区 计算机科学 Q2 ROBOTICS Journal of Field Robotics Pub Date : 2024-04-23 DOI:10.1002/rob.22351
Zhao Liu, Dayuan Chen, Mahmoud A. Eldosoky, Zefeng Ye, Xin Jiang, Yunhui Liu, Shuzhi Sam Ge
{"title":"Puttybot: A sensorized robot for autonomous putty plastering","authors":"Zhao Liu,&nbsp;Dayuan Chen,&nbsp;Mahmoud A. Eldosoky,&nbsp;Zefeng Ye,&nbsp;Xin Jiang,&nbsp;Yunhui Liu,&nbsp;Shuzhi Sam Ge","doi":"10.1002/rob.22351","DOIUrl":null,"url":null,"abstract":"<p>Plastering is dominated manually, exhibiting low levels of automation and inconsistent finished quality. A comprehensive review of literature indicates that extant plastering robots demonstrate a subpar performance when tasked with rectifying defects in the transition area. The limitations encompass a lack of capacity to independently evaluate the quality of work or perform remedial plastering procedures. To address this issue, this research describes the system design of the Puttybot and a paradigm of plastering to solve the stated problems. The Puttybot consists of a mobile chassis, a lift platform, and a macro/micromanipulator. The force-controlled scraper parameters have been calibrated to dynamically modify their rigidity in response to the applied putty. This strategy utilizes convolutional neural networks to identify plastering defects and executes the plastering operation with force feedback. This paradigm's effectiveness was validated during an autonomous plastering trial wherein a large-scale wall was processed without human involvement.</p>","PeriodicalId":192,"journal":{"name":"Journal of Field Robotics","volume":"41 6","pages":"1744-1764"},"PeriodicalIF":4.2000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Field Robotics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rob.22351","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Plastering is dominated manually, exhibiting low levels of automation and inconsistent finished quality. A comprehensive review of literature indicates that extant plastering robots demonstrate a subpar performance when tasked with rectifying defects in the transition area. The limitations encompass a lack of capacity to independently evaluate the quality of work or perform remedial plastering procedures. To address this issue, this research describes the system design of the Puttybot and a paradigm of plastering to solve the stated problems. The Puttybot consists of a mobile chassis, a lift platform, and a macro/micromanipulator. The force-controlled scraper parameters have been calibrated to dynamically modify their rigidity in response to the applied putty. This strategy utilizes convolutional neural networks to identify plastering defects and executes the plastering operation with force feedback. This paradigm's effectiveness was validated during an autonomous plastering trial wherein a large-scale wall was processed without human involvement.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
腻子机器人自主腻子抹灰传感机器人
抹灰作业以人工为主,自动化程度低,成品质量不稳定。文献综述表明,现有的抹灰机器人在负责纠正过渡区域的缺陷时表现不佳。其局限性包括缺乏独立评估工作质量或执行抹灰补救程序的能力。为解决这一问题,本研究介绍了 Puttybot 的系统设计和抹灰范例,以解决上述问题。Puttybot 由一个移动底盘、一个升降平台和一个大型/微型机械手组成。力控刮刀参数已经过校准,可根据涂抹的腻子动态修改其刚度。该策略利用卷积神经网络识别抹灰缺陷,并通过力反馈执行抹灰操作。这一范例的有效性在一次自主抹灰试验中得到了验证,在该试验中,对一面大型墙壁进行了处理,无需人工参与。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Field Robotics
Journal of Field Robotics 工程技术-机器人学
CiteScore
15.00
自引率
3.60%
发文量
80
审稿时长
6 months
期刊介绍: The Journal of Field Robotics seeks to promote scholarly publications dealing with the fundamentals of robotics in unstructured and dynamic environments. The Journal focuses on experimental robotics and encourages publication of work that has both theoretical and practical significance.
期刊最新文献
Issue Information Cover Image, Volume 41, Number 8, December 2024 Issue Information ForzaETH Race Stack—Scaled Autonomous Head‐to‐Head Racing on Fully Commercial Off‐the‐Shelf Hardware Research on Satellite Navigation Control of Six‐Crawler Machinery Based on Fuzzy PID Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1