Alessia Benevento, Pouya Ahadi, Swati Gupta, Massimo Pacella, K. Paynabar
{"title":"Sequential sampling for functional estimation via Sieve","authors":"Alessia Benevento, Pouya Ahadi, Swati Gupta, Massimo Pacella, K. Paynabar","doi":"10.1002/qre.3557","DOIUrl":null,"url":null,"abstract":"Sequential sampling methods are often used to estimate functions describing models subjected to time‐intensive simulations or expensive experiments. These methods provide guidelines for point selection in the domain to capture maximum information about the function. However, in most sequential sampling methods, determining a new point is a time‐consuming process. In this paper, we propose a new method, named Sieve, to sequentially select points of an initially unknown function based on the definition of proper intervals. In contrast with existing methods, Sieve does not involve function estimation at each iteration. Therefore, it presents a greater computational efficiency for achieving a given accuracy in estimation. Sieve brings in tools from computational geometry to subdivide regions of the domain efficiently. Further, we validate our proposed method through numerical simulations and two case studies on the calibration of internal combustion engines and the optimal exploration of an unknown environment by a mobile robot.","PeriodicalId":56088,"journal":{"name":"Quality and Reliability Engineering International","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality and Reliability Engineering International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/qre.3557","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Sequential sampling methods are often used to estimate functions describing models subjected to time‐intensive simulations or expensive experiments. These methods provide guidelines for point selection in the domain to capture maximum information about the function. However, in most sequential sampling methods, determining a new point is a time‐consuming process. In this paper, we propose a new method, named Sieve, to sequentially select points of an initially unknown function based on the definition of proper intervals. In contrast with existing methods, Sieve does not involve function estimation at each iteration. Therefore, it presents a greater computational efficiency for achieving a given accuracy in estimation. Sieve brings in tools from computational geometry to subdivide regions of the domain efficiently. Further, we validate our proposed method through numerical simulations and two case studies on the calibration of internal combustion engines and the optimal exploration of an unknown environment by a mobile robot.
期刊介绍:
Quality and Reliability Engineering International is a journal devoted to practical engineering aspects of quality and reliability. A refereed technical journal published eight times per year, it covers the development and practical application of existing theoretical methods, research and industrial practices. Articles in the journal will be concerned with case studies, tutorial-type reviews and also with applications of new or well-known theory to the solution of actual quality and reliability problems in engineering.
Papers describing the use of mathematical and statistical tools to solve real life industrial problems are encouraged, provided that the emphasis is placed on practical applications and demonstrated case studies.
The scope of the journal is intended to include components, physics of failure, equipment and systems from the fields of electronic, electrical, mechanical and systems engineering. The areas of communications, aerospace, automotive, railways, shipboard equipment, control engineering and consumer products are all covered by the journal.
Quality and reliability of hardware as well as software are covered. Papers on software engineering and its impact on product quality and reliability are encouraged. The journal will also cover the management of quality and reliability in the engineering industry.
Special issues on a variety of key topics are published every year and contribute to the enhancement of Quality and Reliability Engineering International as a major reference in its field.