Xun Kang, Jingqiang Tan, Hans-Martin Schulz, Bin Fu, Biao Chang, Cao Jian, Wenxuan Hu
{"title":"Clumped and in situ carbon and oxygen isotopes of calcite as tracers for oxidation of hydrocarbons in deep siliciclastic strata","authors":"Xun Kang, Jingqiang Tan, Hans-Martin Schulz, Bin Fu, Biao Chang, Cao Jian, Wenxuan Hu","doi":"10.1130/b37326.1","DOIUrl":null,"url":null,"abstract":"The oxidation of hydrocarbons, including methane, is part of interrelated hydrogeochemical reactions affecting the carbon budget in Earth’s crust. To investigate these processes in deep siliciclastic strata, we analyzed core samples from Lower Triassic red beds in the Mahu Sag (Junggar Basin, northwest China) by coupling petrological observations with high-resolution in situ secondary ion mass spectroscopy stable carbon and oxygen isotope analyses and clumped isotopes (Δ47) of authigenic calcite. The strata contain variable oil and gas content as well as abundant high-valence Fe and/or Mn oxides. Three sequential generations of cement occur, which are characterized as (1) non-luminescent, early diagenetic calcite (MnO <0.3%, δ13CVPDB [Vienna Peedee belemnite] = −5.6‰ to −4.1‰); (2) bright-orange luminescent late-stage I calcite (0.75%−5.23% MnO, δ13C = −51.4‰ to −25.8‰); and (3) dull-orange late-stage II calcite (4.10%−12.93% MnO, δ13C = −91.4‰ to −30.9‰). Clumped isotopic thermometry reveals that the calcite precipitation temperature increases successively from <40 °C, to 81−107 °C, to finally 107−132 °C, corresponding to three precipitation time periods: before the Late Triassic, from the Early Jurassic to the Early Cretaceous, and from the Early Cretaceous to the present, respectively. δ13C values of −55.7‰ to −25.8‰ indicate that late-stage I calcite is the final product of oxidation of both methane and C2+ hydrocarbons, whereas δ13C values as low as −91‰ indicate that late-stage II calcite is mainly derived from the thermochemical oxidation of methane (δ13C = −46.8‰ to −39.3‰) induced by high-valence Mn and/or Fe oxides. For late-stage I calcite, hydrocarbon oxidation was most likely promoted by high temperatures, although microbial oxidation cannot be completely ruled out. The higher precipitation temperature of late-stage II calcite demonstrates that the oxidation of methane requires higher activation energies than oxidation of C2+ hydrocarbons. We provide reliable geochemical evidence for thermally induced sequential oxidation of hydrocarbons within deep siliciclastic strata.","PeriodicalId":508784,"journal":{"name":"Geological Society of America Bulletin","volume":"31 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geological Society of America Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1130/b37326.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The oxidation of hydrocarbons, including methane, is part of interrelated hydrogeochemical reactions affecting the carbon budget in Earth’s crust. To investigate these processes in deep siliciclastic strata, we analyzed core samples from Lower Triassic red beds in the Mahu Sag (Junggar Basin, northwest China) by coupling petrological observations with high-resolution in situ secondary ion mass spectroscopy stable carbon and oxygen isotope analyses and clumped isotopes (Δ47) of authigenic calcite. The strata contain variable oil and gas content as well as abundant high-valence Fe and/or Mn oxides. Three sequential generations of cement occur, which are characterized as (1) non-luminescent, early diagenetic calcite (MnO <0.3%, δ13CVPDB [Vienna Peedee belemnite] = −5.6‰ to −4.1‰); (2) bright-orange luminescent late-stage I calcite (0.75%−5.23% MnO, δ13C = −51.4‰ to −25.8‰); and (3) dull-orange late-stage II calcite (4.10%−12.93% MnO, δ13C = −91.4‰ to −30.9‰). Clumped isotopic thermometry reveals that the calcite precipitation temperature increases successively from <40 °C, to 81−107 °C, to finally 107−132 °C, corresponding to three precipitation time periods: before the Late Triassic, from the Early Jurassic to the Early Cretaceous, and from the Early Cretaceous to the present, respectively. δ13C values of −55.7‰ to −25.8‰ indicate that late-stage I calcite is the final product of oxidation of both methane and C2+ hydrocarbons, whereas δ13C values as low as −91‰ indicate that late-stage II calcite is mainly derived from the thermochemical oxidation of methane (δ13C = −46.8‰ to −39.3‰) induced by high-valence Mn and/or Fe oxides. For late-stage I calcite, hydrocarbon oxidation was most likely promoted by high temperatures, although microbial oxidation cannot be completely ruled out. The higher precipitation temperature of late-stage II calcite demonstrates that the oxidation of methane requires higher activation energies than oxidation of C2+ hydrocarbons. We provide reliable geochemical evidence for thermally induced sequential oxidation of hydrocarbons within deep siliciclastic strata.