Minimum-Drag Fault-Tolerant Aircraft Control Allocation via Online Lifting Line Calculation

IF 1.5 3区 工程技术 Q2 ENGINEERING, AEROSPACE Journal of Aircraft Pub Date : 2024-04-22 DOI:10.2514/1.c037707
Aristeidis Antonakis, J. Biannic
{"title":"Minimum-Drag Fault-Tolerant Aircraft Control Allocation via Online Lifting Line Calculation","authors":"Aristeidis Antonakis, J. Biannic","doi":"10.2514/1.c037707","DOIUrl":null,"url":null,"abstract":"The minimization of drag at any given flight condition is necessary for the reduction of aircraft fuel consumption and is strongly linked to the way the different aerodynamic surfaces are deflected to control the flight trajectory. Current optimal control allocation methods calculate commands that minimize norm-based metrics that are only loosely related to aircraft drag. In this paper, using a novel real-time application of the lifting line concept, a new control allocation method for overactuated “biomorphic” fixed-wing aircraft is introduced, aiming at addressing the above limitation. The proposed technique outputs optimal, fault-tolerant minimum-drag control allocation solutions for vehicles with large numbers of aerodynamic surfaces, combined with angle-of-attack and angle-of-sideslip estimator functions that allow for direct, localized control of the lift force vectors. Owing to its close link to lifting line theory, which constitutes an integral part of the proposed allocation calculation, the method represents a low-computational-cost solution to the control allocation problem, easily adaptable to different aircraft configurations. Alongside its theoretical development and stability analysis, a series of simulated experiments are presented that demonstrate the proposed method’s characteristics and potential applications.","PeriodicalId":14927,"journal":{"name":"Journal of Aircraft","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aircraft","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.c037707","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

The minimization of drag at any given flight condition is necessary for the reduction of aircraft fuel consumption and is strongly linked to the way the different aerodynamic surfaces are deflected to control the flight trajectory. Current optimal control allocation methods calculate commands that minimize norm-based metrics that are only loosely related to aircraft drag. In this paper, using a novel real-time application of the lifting line concept, a new control allocation method for overactuated “biomorphic” fixed-wing aircraft is introduced, aiming at addressing the above limitation. The proposed technique outputs optimal, fault-tolerant minimum-drag control allocation solutions for vehicles with large numbers of aerodynamic surfaces, combined with angle-of-attack and angle-of-sideslip estimator functions that allow for direct, localized control of the lift force vectors. Owing to its close link to lifting line theory, which constitutes an integral part of the proposed allocation calculation, the method represents a low-computational-cost solution to the control allocation problem, easily adaptable to different aircraft configurations. Alongside its theoretical development and stability analysis, a series of simulated experiments are presented that demonstrate the proposed method’s characteristics and potential applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过在线升力线计算实现最小阻力容错飞机控制分配
在任何给定的飞行条件下,阻力最小化是降低飞机油耗的必要条件,并且与控制飞行轨迹的不同空气动力表面的偏转方式密切相关。目前的优化控制分配方法计算的指令是使基于规范的指标最小化,而这些指标与飞机阻力只有松散的联系。本文利用升力线概念的新颖实时应用,介绍了一种适用于过驱动 "生物形态 "固定翼飞机的新控制分配方法,旨在解决上述局限性。所提出的技术可为具有大量气动表面的飞行器输出最优、容错的最小阻力控制分配方案,并结合攻击角和侧滑角估计函数,实现对升力矢量的直接、局部控制。由于该方法与升力线理论密切相关,而升力线理论是拟议分配计算的组成部分,因此该方法是控制分配问题的低计算成本解决方案,可轻松适应不同的飞机构型。除了理论发展和稳定性分析之外,还介绍了一系列模拟实验,以展示所建议方法的特点和潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Aircraft
Journal of Aircraft 工程技术-工程:宇航
CiteScore
4.50
自引率
31.80%
发文量
141
审稿时长
6 months
期刊介绍: This Journal is devoted to the advancement of the applied science and technology of airborne flight through the dissemination of original archival papers describing significant advances in aircraft, the operation of aircraft, and applications of aircraft technology to other fields. The Journal publishes qualified papers on aircraft systems, air transportation, air traffic management, and multidisciplinary design optimization of aircraft, flight mechanics, flight and ground testing, applied computational fluid dynamics, flight safety, weather and noise hazards, human factors, airport design, airline operations, application of computers to aircraft including artificial intelligence/expert systems, production methods, engineering economic analyses, affordability, reliability, maintainability, and logistics support, integration of propulsion and control systems into aircraft design and operations, aircraft aerodynamics (including unsteady aerodynamics), structural design/dynamics , aeroelasticity, and aeroacoustics. It publishes papers on general aviation, military and civilian aircraft, UAV, STOL and V/STOL, subsonic, supersonic, transonic, and hypersonic aircraft. Papers are sought which comprehensively survey results of recent technical work with emphasis on aircraft technology application.
期刊最新文献
Experimental Study on a Liquid Hydrogen Tank for Unmanned Aerial Vehicle Applications Numerical Study of Skipping Motion of Blended-Wing–Body Aircraft Ditching on Calm/Wavy Water Blended-Wing-Body Regional Aircraft Optimization with High-Fidelity Aerodynamics and Critical Design Requirements Towards Wall-Resolved Large-Eddy Simulation of the High-Lift Common Research Model Investigation of Hybrid Laminar Flow Control Capabilities from the Flight Envelope Perspective
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1