Enhancing Flood Impact Analysis through the Integration of Landsat and MODIS Imagery

Tran Vu Van Hoa, Thien Chi Nguyen, Tung Thanh Truong, Tuan Anh Nguyen, Hoang Bao Lam, Son Thai Dang
{"title":"Enhancing Flood Impact Analysis through the Integration of Landsat and MODIS Imagery","authors":"Tran Vu Van Hoa, Thien Chi Nguyen, Tung Thanh Truong, Tuan Anh Nguyen, Hoang Bao Lam, Son Thai Dang","doi":"10.32628/ijsrset2411257","DOIUrl":null,"url":null,"abstract":"This article explores the efficacy of integrating Landsat and MODIS satellite imagery for comprehensive flood impact analysis. By employing advanced remote sensing technologies and sophisticated data processing techniques, this study offers a methodological framework that enhances the precision and depth of environmental analysis. The core methodology involves the systematic processing of satellite data, including radiometric and geometric corrections, combined with the use of analytical indices such as the Normalized Difference Water Index (NDWI) and the Enhanced Vegetation Index (EVI). These indices play a crucial role in accurately delineating water bodies and assessing the extent of flooding. The approach not only improves the reliability of flood mapping but also contributes to the broader understanding of environmental changes and aids in effective disaster management. Through this study, we demonstrate how strategic data integration can provide valuable insights for policymakers, enhancing responses to environmental crises.","PeriodicalId":14228,"journal":{"name":"International Journal of Scientific Research in Science, Engineering and Technology","volume":"15 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Scientific Research in Science, Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32628/ijsrset2411257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article explores the efficacy of integrating Landsat and MODIS satellite imagery for comprehensive flood impact analysis. By employing advanced remote sensing technologies and sophisticated data processing techniques, this study offers a methodological framework that enhances the precision and depth of environmental analysis. The core methodology involves the systematic processing of satellite data, including radiometric and geometric corrections, combined with the use of analytical indices such as the Normalized Difference Water Index (NDWI) and the Enhanced Vegetation Index (EVI). These indices play a crucial role in accurately delineating water bodies and assessing the extent of flooding. The approach not only improves the reliability of flood mapping but also contributes to the broader understanding of environmental changes and aids in effective disaster management. Through this study, we demonstrate how strategic data integration can provide valuable insights for policymakers, enhancing responses to environmental crises.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过整合 Landsat 和 MODIS 影像加强洪水影响分析
本文探讨了整合 Landsat 和 MODIS 卫星图像进行洪水影响综合分析的功效。通过采用先进的遥感技术和复杂的数据处理技术,本研究提供了一个方法框架,提高了环境分析的精度和深度。核心方法包括对卫星数据进行系统处理,包括辐射和几何校正,并结合使用归一化差异水指数(NDWI)和增强植被指数(EVI)等分析指数。这些指数在准确划分水体和评估洪水范围方面发挥着至关重要的作用。这种方法不仅提高了洪水测绘的可靠性,还有助于更广泛地了解环境变化,并帮助进行有效的灾害管理。通过这项研究,我们展示了战略性数据整合如何为决策者提供有价值的见解,从而加强对环境危机的应对。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
UGC Guidelines on Sustainable and Vibrant University- Industry Linkage System for Indian Universities, 2024 Leachate as a Fertilizer Artificial Intelligence in Healthcare : A Review Advancements in Quadcopter Development through Additive Manufacturing: A Comprehensive Review Sensing Human Emotion using Emerging Machine Learning Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1