Rapid subsurface analysis of frequency-domain thermoreflectance images with K-means clustering

Amun Jarzembski, Zachary T. Piontkowski, Wyatt Hodges, Matthew Bahr, Anthony McDonald, William Delmas, Gregory Pickrell, L. Yates
{"title":"Rapid subsurface analysis of frequency-domain thermoreflectance images with K-means clustering","authors":"Amun Jarzembski, Zachary T. Piontkowski, Wyatt Hodges, Matthew Bahr, Anthony McDonald, William Delmas, Gregory Pickrell, L. Yates","doi":"10.1063/5.0201473","DOIUrl":null,"url":null,"abstract":"K-means clustering analysis is applied to frequency-domain thermoreflectance (FDTR) hyperspectral image data to rapidly screen the spatial distribution of thermophysical properties at material interfaces. Performing FDTR while raster scanning a sample consisting of 8.6 μm of doped-silicon (Si) bonded to a doped-Si substrate identifies spatial variation in the subsurface bond quality. Routine thermal analysis at select pixels quantifies this variation in bond quality and allows assignment of bonded, partially bonded, and unbonded regions. Performing this same routine thermal analysis across the entire map, however, becomes too computationally demanding for rapid screening of bond quality. To address this, K-means clustering was used to reduce the dimensionality of the dataset from more than 20 000 pixel spectra to just K=3 component spectra. The three component spectra were then used to express every pixel in the image through a least-squares minimized linear combination providing continuous interpolation between the components across spatially varying features, e.g., bonded to unbonded transition regions. Fitting the component spectra to the thermal model, thermal properties for each K cluster are extracted and then distributed according to the weighting established by the regressed linear combination. Thermophysical property maps are then constructed and capture significant variation in bond quality over 25 μm length scales. The use of K-means clustering to achieve these thermal property maps results in a 74-fold speed improvement over explicit fitting of every pixel.","PeriodicalId":502933,"journal":{"name":"Journal of Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0201473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

K-means clustering analysis is applied to frequency-domain thermoreflectance (FDTR) hyperspectral image data to rapidly screen the spatial distribution of thermophysical properties at material interfaces. Performing FDTR while raster scanning a sample consisting of 8.6 μm of doped-silicon (Si) bonded to a doped-Si substrate identifies spatial variation in the subsurface bond quality. Routine thermal analysis at select pixels quantifies this variation in bond quality and allows assignment of bonded, partially bonded, and unbonded regions. Performing this same routine thermal analysis across the entire map, however, becomes too computationally demanding for rapid screening of bond quality. To address this, K-means clustering was used to reduce the dimensionality of the dataset from more than 20 000 pixel spectra to just K=3 component spectra. The three component spectra were then used to express every pixel in the image through a least-squares minimized linear combination providing continuous interpolation between the components across spatially varying features, e.g., bonded to unbonded transition regions. Fitting the component spectra to the thermal model, thermal properties for each K cluster are extracted and then distributed according to the weighting established by the regressed linear combination. Thermophysical property maps are then constructed and capture significant variation in bond quality over 25 μm length scales. The use of K-means clustering to achieve these thermal property maps results in a 74-fold speed improvement over explicit fitting of every pixel.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 K-means 聚类对频域热反射图像进行快速地表下分析
K-means 聚类分析应用于频域热反射(FDTR)高光谱图像数据,以快速筛选材料界面热物理特性的空间分布。在对由 8.6 μm 的掺杂硅(Si)与掺杂硅基板结合而成的样品进行光栅扫描时执行 FDTR,可识别次表层结合质量的空间变化。对选定像素进行常规热分析,可量化键合质量的这种变化,并确定键合、部分键合和未键合区域。然而,在整个地图上执行相同的常规热分析,对快速筛选粘接质量的计算要求太高。为了解决这个问题,我们使用 K 均值聚类将数据集的维度从 20,000 多个像素光谱降低到 K=3 分量光谱。然后,通过最小二乘最小化线性组合,利用这三个分量光谱来表达图像中的每个像素,从而在空间变化特征(如粘合到非粘合的过渡区域)上提供分量之间的连续插值。根据热模型拟合分量光谱,提取每个 K 簇的热属性,然后根据回归线性组合确定的权重进行分布。然后构建热物理性质图,并捕捉 25 μm 长度尺度上键合质量的显著变化。与明确拟合每个像素相比,使用 K 均值聚类来绘制这些热物理性质图的速度提高了 74 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gallium oxide semiconductor-based large volume ultrafast radiation hard spectroscopic scintillators Optical properties of ZnO nanocrystals under photo-induced electron doping Observation of transient aspects of self-sustained oscillations and the role of parallel capacitance in VO2-based planar devices Effect of grain boundary segregation of rare earth element on deformation behavior of Mg alloys Tailoring band structures and photocatalytic overall water splitting in a two-dimensional GaN/black phosphorus heterojunction: First-principles calculations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1