{"title":"Effect of AP distribution on energy release characteristics and functional force of HMX/AP/Al explosives","authors":"Han Gao, Wen Pan, Xiao-Jun Feng","doi":"10.1002/prep.202300263","DOIUrl":null,"url":null,"abstract":"In order to understand the reaction kinetics of HMX/AP/Al ternary system, the different distribution of AP in HMX/AP/Al explosives was realized by two different preparation techniques. Detonation test results show that the detonation velocity, explosion heat and detonation pressure of HAP samples are higher than those of HAl samples, but the extent of improvement is not high, not more than 5 %. The results of scanning electron microscopy showed that AP in HAP samples was distributed on the surface of HMX crystal. AP were dispersed around HMX crystals in HAl samples. The experimental results of explosive fireball performance show that the fireball expansion speed of HAP samples is better than that of HAl samples, demonstrating a good fireball effect. Underwater test results show that the shock wave peak pressure and bubble pulsation period of HAP samples increase by 3.06 % and 7.95 % respectively, and shock wave energy and bubble energy increase by 9.8 % and 25.42 % compared with bubble energy. The experimental results show that HAP samples are superior to HAl samples in accelerating ability of Al flies. The dispersion of AP on the HMX crystal surface promotes the energy release of HMX/AP/Al explosives more.","PeriodicalId":20800,"journal":{"name":"Propellants, Explosives, Pyrotechnics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Propellants, Explosives, Pyrotechnics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/prep.202300263","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In order to understand the reaction kinetics of HMX/AP/Al ternary system, the different distribution of AP in HMX/AP/Al explosives was realized by two different preparation techniques. Detonation test results show that the detonation velocity, explosion heat and detonation pressure of HAP samples are higher than those of HAl samples, but the extent of improvement is not high, not more than 5 %. The results of scanning electron microscopy showed that AP in HAP samples was distributed on the surface of HMX crystal. AP were dispersed around HMX crystals in HAl samples. The experimental results of explosive fireball performance show that the fireball expansion speed of HAP samples is better than that of HAl samples, demonstrating a good fireball effect. Underwater test results show that the shock wave peak pressure and bubble pulsation period of HAP samples increase by 3.06 % and 7.95 % respectively, and shock wave energy and bubble energy increase by 9.8 % and 25.42 % compared with bubble energy. The experimental results show that HAP samples are superior to HAl samples in accelerating ability of Al flies. The dispersion of AP on the HMX crystal surface promotes the energy release of HMX/AP/Al explosives more.
期刊介绍:
Propellants, Explosives, Pyrotechnics (PEP) is an international, peer-reviewed journal containing Full Papers, Short Communications, critical Reviews, as well as details of forthcoming meetings and book reviews concerned with the research, development and production in relation to propellants, explosives, and pyrotechnics for all applications. Being the official journal of the International Pyrotechnics Society, PEP is a vital medium and the state-of-the-art forum for the exchange of science and technology in energetic materials. PEP is published 12 times a year.
PEP is devoted to advancing the science, technology and engineering elements in the storage and manipulation of chemical energy, specifically in propellants, explosives and pyrotechnics. Articles should provide scientific context, articulate impact, and be generally applicable to the energetic materials and wider scientific community. PEP is not a defense journal and does not feature the weaponization of materials and related systems or include information that would aid in the development or utilization of improvised explosive systems, e.g., synthesis routes to terrorist explosives.