Bing Zhang, Hui Li, Shuai Zhang, Jing Sun, Ning Wei, Wenhong Xu, Huan Wang
{"title":"Multi-Constraint and Multi-Policy Path Hopping Active Defense Method Based on SDN","authors":"Bing Zhang, Hui Li, Shuai Zhang, Jing Sun, Ning Wei, Wenhong Xu, Huan Wang","doi":"10.3390/fi16040143","DOIUrl":null,"url":null,"abstract":"Path hopping serves as an active defense mechanism in network security, yet it encounters challenges like a restricted path switching space, the recurrent use of similar paths and vital nodes, a singular triggering mechanism for path switching, and fixed hopping intervals. This paper introduces an active defense method employing multiple constraints and strategies for path hopping. A depth-first search (DFS) traversal is utilized to compute all possible paths between nodes, thereby broadening the path switching space while simplifying path generation complexity. Subsequently, constraints are imposed on residual bandwidth, selection periods, path similitude, and critical nodes to reduce the likelihood of reusing similar paths and crucial nodes. Moreover, two path switching strategies are formulated based on the weights of residual bandwidth and critical nodes, along with the calculation of path switching periods. This facilitates adaptive switching of path hopping paths and intervals, contingent on the network’s residual bandwidth threshold, in response to diverse attack scenarios. Simulation outcomes illustrate that this method, while maintaining normal communication performance, expands the path switching space effectively, safeguards against eavesdropping and link-flooding attacks, enhances path switching diversity and unpredictability, and fortifies the network’s resilience against malicious attacks.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"35 24","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi16040143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Path hopping serves as an active defense mechanism in network security, yet it encounters challenges like a restricted path switching space, the recurrent use of similar paths and vital nodes, a singular triggering mechanism for path switching, and fixed hopping intervals. This paper introduces an active defense method employing multiple constraints and strategies for path hopping. A depth-first search (DFS) traversal is utilized to compute all possible paths between nodes, thereby broadening the path switching space while simplifying path generation complexity. Subsequently, constraints are imposed on residual bandwidth, selection periods, path similitude, and critical nodes to reduce the likelihood of reusing similar paths and crucial nodes. Moreover, two path switching strategies are formulated based on the weights of residual bandwidth and critical nodes, along with the calculation of path switching periods. This facilitates adaptive switching of path hopping paths and intervals, contingent on the network’s residual bandwidth threshold, in response to diverse attack scenarios. Simulation outcomes illustrate that this method, while maintaining normal communication performance, expands the path switching space effectively, safeguards against eavesdropping and link-flooding attacks, enhances path switching diversity and unpredictability, and fortifies the network’s resilience against malicious attacks.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.