Wenhao Tang, Taotao Zhou, Yang Duan, Miaomiao Zhou, Zhenchao Li, Ruiping Liu
{"title":"Nonflammable in situ PDOL-based gel polymer electrolyte for high-energy-density and high safety lithium metal batteries","authors":"Wenhao Tang, Taotao Zhou, Yang Duan, Miaomiao Zhou, Zhenchao Li, Ruiping Liu","doi":"10.1002/cnl2.130","DOIUrl":null,"url":null,"abstract":"<p>Due to its high energy density and low interface impedance, in situ polymerized gel electrolytes were considered as a promising electrolyte candidate for lithium metal batteries (LMBs). In this work, a new flame-retardant gel electrolyte was prepared via in situ ring-opening polymerization of DOL and TEP. The PDOL–TEP electrolyte exhibits excellent room temperature ionic conductivity (0.38 mS cm<sup>−1</sup>), wide electrochemical window (4.4 V), high Li<sup>+</sup> transference number (0.57), and enhanced safety. Thus, the NCM811||Li cells with PDOL–TEP electrolyte exhibit excellent cycle stability (82.7% of capacity retention rate after 300 cycles at 0.5 C) and rate performance (156 and 119 mAh g<sup>−1</sup> at 0.5 and 1 C). Furthermore, phosphorus radicals decomposed from TEP can combine with hydrogen radicals to block the combustion reaction. This work provides an effective method for the preparation of solid-state LMBs with high voltage, high energy density, and high safety.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"3 3","pages":"386-395"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.130","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Neutralization","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Due to its high energy density and low interface impedance, in situ polymerized gel electrolytes were considered as a promising electrolyte candidate for lithium metal batteries (LMBs). In this work, a new flame-retardant gel electrolyte was prepared via in situ ring-opening polymerization of DOL and TEP. The PDOL–TEP electrolyte exhibits excellent room temperature ionic conductivity (0.38 mS cm−1), wide electrochemical window (4.4 V), high Li+ transference number (0.57), and enhanced safety. Thus, the NCM811||Li cells with PDOL–TEP electrolyte exhibit excellent cycle stability (82.7% of capacity retention rate after 300 cycles at 0.5 C) and rate performance (156 and 119 mAh g−1 at 0.5 and 1 C). Furthermore, phosphorus radicals decomposed from TEP can combine with hydrogen radicals to block the combustion reaction. This work provides an effective method for the preparation of solid-state LMBs with high voltage, high energy density, and high safety.