{"title":"Adaptive control of A class of nonlinear systems with guaranteed parameter estimation: A concurrent learning based approach","authors":"Serhat Obuz, Erkan Zergeroglu, Enver Tatlicioglu","doi":"10.1049/cth2.12668","DOIUrl":null,"url":null,"abstract":"<p>Recent advances in concurrent learning based adaptive controllers have relaxed the persistency of excitation condition required to achieve exponential tracking and parameter estimation error convergence. This was made possible via the use of additional concurrent learning stacks in the parameter estimation algorithm. However, the proposed concurrent learning components, that is, the history stacks, needed to be filled with “selected” values dependent on the actual system states. Therefore, the previously proposed concurrent learning adaptive controllers required the system to be stable initially for a finite time so that the corresponding history stacks can be filled (finite excitation condition). In this work, motivated to remove the finite excitation condition, a novel desired system state based concurrent learning adaptive controller is proposed. In order to remove the system state dependencies in the controller and estimation algorithms, a filtered version of the dynamics and a novel prediction error formulation have been designed. The overall exponential stability, parameter error convergence and boundedness of the system states during closed loop operations are ensured via Lyapunov based arguments. The main advantages of the proposed method are its dependence on the desired system states and the overall stability results that paved the way in removing the need for finite excitation condition. Numerical studies performed on a two link robotic device are also presented to illustrate the feasibility of the proposed method.</p>","PeriodicalId":50382,"journal":{"name":"IET Control Theory and Applications","volume":"18 10","pages":"1328-1337"},"PeriodicalIF":2.2000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.12668","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Control Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cth2.12668","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advances in concurrent learning based adaptive controllers have relaxed the persistency of excitation condition required to achieve exponential tracking and parameter estimation error convergence. This was made possible via the use of additional concurrent learning stacks in the parameter estimation algorithm. However, the proposed concurrent learning components, that is, the history stacks, needed to be filled with “selected” values dependent on the actual system states. Therefore, the previously proposed concurrent learning adaptive controllers required the system to be stable initially for a finite time so that the corresponding history stacks can be filled (finite excitation condition). In this work, motivated to remove the finite excitation condition, a novel desired system state based concurrent learning adaptive controller is proposed. In order to remove the system state dependencies in the controller and estimation algorithms, a filtered version of the dynamics and a novel prediction error formulation have been designed. The overall exponential stability, parameter error convergence and boundedness of the system states during closed loop operations are ensured via Lyapunov based arguments. The main advantages of the proposed method are its dependence on the desired system states and the overall stability results that paved the way in removing the need for finite excitation condition. Numerical studies performed on a two link robotic device are also presented to illustrate the feasibility of the proposed method.
期刊介绍:
IET Control Theory & Applications is devoted to control systems in the broadest sense, covering new theoretical results and the applications of new and established control methods. Among the topics of interest are system modelling, identification and simulation, the analysis and design of control systems (including computer-aided design), and practical implementation. The scope encompasses technological, economic, physiological (biomedical) and other systems, including man-machine interfaces.
Most of the papers published deal with original work from industrial and government laboratories and universities, but subject reviews and tutorial expositions of current methods are welcomed. Correspondence discussing published papers is also welcomed.
Applications papers need not necessarily involve new theory. Papers which describe new realisations of established methods, or control techniques applied in a novel situation, or practical studies which compare various designs, would be of interest. Of particular value are theoretical papers which discuss the applicability of new work or applications which engender new theoretical applications.