A FAIR and modular image-based workflow for knowledge discovery in the emerging field of imageomics

IF 6.3 2区 环境科学与生态学 Q1 ECOLOGY Methods in Ecology and Evolution Pub Date : 2024-04-22 DOI:10.1111/2041-210X.14327
Meghan A. Balk, John Bradley, M. Maruf, Bahadir Altintaş, Yasin Bakiş, Henry L. Bart Jr, David Breen, Christopher R. Florian, Jane Greenberg, Anuj Karpatne, Kevin Karnani, Paula Mabee, Joel Pepper, Dom Jebbia, Thibault Tabarin, Xiaojun Wang, Hilmar Lapp
{"title":"A FAIR and modular image-based workflow for knowledge discovery in the emerging field of imageomics","authors":"Meghan A. Balk,&nbsp;John Bradley,&nbsp;M. Maruf,&nbsp;Bahadir Altintaş,&nbsp;Yasin Bakiş,&nbsp;Henry L. Bart Jr,&nbsp;David Breen,&nbsp;Christopher R. Florian,&nbsp;Jane Greenberg,&nbsp;Anuj Karpatne,&nbsp;Kevin Karnani,&nbsp;Paula Mabee,&nbsp;Joel Pepper,&nbsp;Dom Jebbia,&nbsp;Thibault Tabarin,&nbsp;Xiaojun Wang,&nbsp;Hilmar Lapp","doi":"10.1111/2041-210X.14327","DOIUrl":null,"url":null,"abstract":"<p>\n \n </p>","PeriodicalId":208,"journal":{"name":"Methods in Ecology and Evolution","volume":"15 6","pages":"1129-1145"},"PeriodicalIF":6.3000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/2041-210X.14327","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in Ecology and Evolution","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/2041-210X.14327","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于图像的 FAIR 模块化工作流程,用于新兴图像组学领域的知识发现
基于图像的机器学习工具是一个新兴的 "大数据 "研究领域。iNaturalist 等公民科学平台和博物馆主导的计划为研究人员提供了大量的数据和知识。其中包括元数据提取、物种识别和表型数据。生态和进化生物学家越来越多地使用复杂的多步骤数据处理方法。这些过程通常包括机器学习技术,而这些技术通常是由他人建立的,很难被合作中的其他成员重用。我们提出了一个机器学习应用的概念工作流模型,该模型使用图像数据提取新兴图像组学领域的生物知识。我们概述了创建自动化、可重用和模块化工作流的技术和最佳实践,并展示了这些技术和实践如何促进机器学习模型的重用和适应新的研究问题。我们鼓励研究人员--包括计算机科学家和生物学家--在这一概念性工作流程的基础上,结合图像数据上的机器学习工具,回答各自领域的新科学问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.60
自引率
3.00%
发文量
236
审稿时长
4-8 weeks
期刊介绍: A British Ecological Society journal, Methods in Ecology and Evolution (MEE) promotes the development of new methods in ecology and evolution, and facilitates their dissemination and uptake by the research community. MEE brings together papers from previously disparate sub-disciplines to provide a single forum for tracking methodological developments in all areas. MEE publishes methodological papers in any area of ecology and evolution, including: -Phylogenetic analysis -Statistical methods -Conservation & management -Theoretical methods -Practical methods, including lab and field -This list is not exhaustive, and we welcome enquiries about possible submissions. Methods are defined in the widest terms and may be analytical, practical or conceptual. A primary aim of the journal is to maximise the uptake of techniques by the community. We recognise that a major stumbling block in the uptake and application of new methods is the accessibility of methods. For example, users may need computer code, example applications or demonstrations of methods.
期刊最新文献
Cover Picture and Issue Information Propagating observation errors to enable scalable and rigorous enumeration of plant population abundance with aerial imagery Spatially explicit predictions using spatial eigenvector maps SimpleMetaPipeline: Breaking the bioinformatics bottleneck in metabarcoding A LiDAR-driven pruning algorithm to delineate canopy drainage areas of stemflow and throughfall drip points
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1