{"title":"A Method for Automatic Three-Dimensional Particle Tracing Under Laboratory Conditions Using Dynamic X-Ray Computed Microtomography","authors":"Judith Marie Undine Siebert, Stefan Odenbach","doi":"10.1007/s11242-024-02086-9","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a method for particle tracing in laboratory X-ray micro-computed tomography (<i>µ</i>CT) using an adjusted Random Sample Consensus (RANSAC) algorithm combined with least squares ellipse fitting (LSF). For method testing, a setup for the investigation of deep bed filtration (DBF) has been used as an example of a complex process that can be elucidated with such a method. Particle tracking with tomography systems requires high-temporal resolution which can only be achieved with synchrotron radiation computer tomography. Therefore, in this work, it has been demonstrated that instead of particle tracking, particle tracing in opaque systems such as DBF can be performed in laboratory <i>µ</i>CT systems. To achieve particle tracing, dynamic <i>µ</i>CT scans with a duration between 30 and 110 s combined with an exposure time of 0.13 s/projection were executed and during the scan time the filtration was performed, causing parabola shaped motion artefacts. The developed method exploits the motion artefacts created by the particle motion during the scan. It could be shown that it is possible to trace particles in complex structures within only one 30 s scan. Furthermore, through trace length and time, it is possible to determine the average velocity. Whereby, the accuracy and limits depend on the particle size, particle velocity/data rate and the X-ray attenuation of particle and medium.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"151 7","pages":"1607 - 1626"},"PeriodicalIF":2.7000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11242-024-02086-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport in Porous Media","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11242-024-02086-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a method for particle tracing in laboratory X-ray micro-computed tomography (µCT) using an adjusted Random Sample Consensus (RANSAC) algorithm combined with least squares ellipse fitting (LSF). For method testing, a setup for the investigation of deep bed filtration (DBF) has been used as an example of a complex process that can be elucidated with such a method. Particle tracking with tomography systems requires high-temporal resolution which can only be achieved with synchrotron radiation computer tomography. Therefore, in this work, it has been demonstrated that instead of particle tracking, particle tracing in opaque systems such as DBF can be performed in laboratory µCT systems. To achieve particle tracing, dynamic µCT scans with a duration between 30 and 110 s combined with an exposure time of 0.13 s/projection were executed and during the scan time the filtration was performed, causing parabola shaped motion artefacts. The developed method exploits the motion artefacts created by the particle motion during the scan. It could be shown that it is possible to trace particles in complex structures within only one 30 s scan. Furthermore, through trace length and time, it is possible to determine the average velocity. Whereby, the accuracy and limits depend on the particle size, particle velocity/data rate and the X-ray attenuation of particle and medium.
期刊介绍:
-Publishes original research on physical, chemical, and biological aspects of transport in porous media-
Papers on porous media research may originate in various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering)-
Emphasizes theory, (numerical) modelling, laboratory work, and non-routine applications-
Publishes work of a fundamental nature, of interest to a wide readership, that provides novel insight into porous media processes-
Expanded in 2007 from 12 to 15 issues per year.
Transport in Porous Media publishes original research on physical and chemical aspects of transport phenomena in rigid and deformable porous media. These phenomena, occurring in single and multiphase flow in porous domains, can be governed by extensive quantities such as mass of a fluid phase, mass of component of a phase, momentum, or energy. Moreover, porous medium deformations can be induced by the transport phenomena, by chemical and electro-chemical activities such as swelling, or by external loading through forces and displacements. These porous media phenomena may be studied by researchers from various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering).