Ghostbusting—Reducing bias due to identification errors in spatial capture-recapture histories

IF 6.3 2区 环境科学与生态学 Q1 ECOLOGY Methods in Ecology and Evolution Pub Date : 2024-04-21 DOI:10.1111/2041-210X.14326
Abinand Reddy Kodi, Jasmin Howard, David Louis Borchers, Hannah Worthington, Justine Shanti Alexander, Purevjav Lkhagvajav, Gantulga Bayandonoi, Munkhtogtokh Ochirjav, Sergelen Erdenebaatar, Choidogjamts Byambasuren, Nyamzav Battulga, Örjan Johansson, Koustubh Sharma
{"title":"Ghostbusting—Reducing bias due to identification errors in spatial capture-recapture histories","authors":"Abinand Reddy Kodi,&nbsp;Jasmin Howard,&nbsp;David Louis Borchers,&nbsp;Hannah Worthington,&nbsp;Justine Shanti Alexander,&nbsp;Purevjav Lkhagvajav,&nbsp;Gantulga Bayandonoi,&nbsp;Munkhtogtokh Ochirjav,&nbsp;Sergelen Erdenebaatar,&nbsp;Choidogjamts Byambasuren,&nbsp;Nyamzav Battulga,&nbsp;Örjan Johansson,&nbsp;Koustubh Sharma","doi":"10.1111/2041-210X.14326","DOIUrl":null,"url":null,"abstract":"<p>\n \n </p>","PeriodicalId":208,"journal":{"name":"Methods in Ecology and Evolution","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/2041-210X.14326","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in Ecology and Evolution","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/2041-210X.14326","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
捉鬼--减少空间捕获-再捕获历史记录中识别误差造成的偏差
识别个体是通过空间捕获-重捕法估算种群数量的关键,但有时也会出现识别错误。最常见的识别错误是无法识别先前检测到的个体,从而产生 "幽灵 "约翰逊。幽灵通常表现为捕获历史中的单个检测个体("单体")。为了解决幽灵问题,我们开发了一种以至少发现为条件的空间捕获-重捕方法。标准的空间捕获-再捕获(SCR)模型是(SCR-2)的特例。 我们通过模拟研究了 "单体 "幽灵对模型参数估计的影响。随着幽灵个体比例的增加,SCR 方法对丰度的估计越来越高,即使只有 10%的检测个体是幽灵个体,也会出现正偏差,而当 30%的个体是幽灵个体时,偏差在 43%到 71%之间。SCR-2 方法的估计值在有幽灵存在的情况下偏差较小,但精确度有所下降。SCR-2方法估计丰度的均方误差在高相遇率下有幽灵的所有情况下都较低,在低相遇率下有30%或更多幽灵的情况下也较低。我们还将我们的方法应用于蒙古两个地点的雪豹相机陷阱调查捕获历史记录,发现 SCR 方法在这两个地点都得出了更高的丰度估计值。SCR-2 方法可以消除幽灵捕获历史记录中的偏差,但会损失一些精度。我们建议在幽灵捕获量可能超过 10%的情况下或有大量单次探测捕获历史记录的调查中使用 SCR-2 方法,除非样本数量非常少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.60
自引率
3.00%
发文量
236
审稿时长
4-8 weeks
期刊介绍: A British Ecological Society journal, Methods in Ecology and Evolution (MEE) promotes the development of new methods in ecology and evolution, and facilitates their dissemination and uptake by the research community. MEE brings together papers from previously disparate sub-disciplines to provide a single forum for tracking methodological developments in all areas. MEE publishes methodological papers in any area of ecology and evolution, including: -Phylogenetic analysis -Statistical methods -Conservation & management -Theoretical methods -Practical methods, including lab and field -This list is not exhaustive, and we welcome enquiries about possible submissions. Methods are defined in the widest terms and may be analytical, practical or conceptual. A primary aim of the journal is to maximise the uptake of techniques by the community. We recognise that a major stumbling block in the uptake and application of new methods is the accessibility of methods. For example, users may need computer code, example applications or demonstrations of methods.
期刊最新文献
Spatially explicit predictions using spatial eigenvector maps Cover Picture and Issue Information ChatGPT is likely reducing opportunity for support, friendship and learned kindness in research Should we still teach or learn coding? A postgraduate student perspective on the use of large language models for coding in ecology and evolution Pressure to publish introduces large-language model risks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1