Time-domain finite element method based on arbitrary quadrilateral meshes for two-dimensional SHTE mode seismoelectric and electroseismic waves modelling

IF 1.8 3区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Geophysical Prospecting Pub Date : 2024-04-21 DOI:10.1111/1365-2478.13518
Jun Li, Changchun Yin, Yunhe Liu, Xianyang Huang, Bo Zhang, Xiuyan Ren, Yang Su, Luyuan Wang, Xinpeng Ma
{"title":"Time-domain finite element method based on arbitrary quadrilateral meshes for two-dimensional SHTE mode seismoelectric and electroseismic waves modelling","authors":"Jun Li,&nbsp;Changchun Yin,&nbsp;Yunhe Liu,&nbsp;Xianyang Huang,&nbsp;Bo Zhang,&nbsp;Xiuyan Ren,&nbsp;Yang Su,&nbsp;Luyuan Wang,&nbsp;Xinpeng Ma","doi":"10.1111/1365-2478.13518","DOIUrl":null,"url":null,"abstract":"<p>A time-domain finite-element method based on an arbitrary quadrilateral mesh is proposed to simulate two dimensional seismoelectric and electroseismic waves in SHTE mode. By decoupling the electrokinetic coupling equation, we can solve seismic waves and electromagnetic waves independently. For the simulation of seismic wavefield, we utilize a more compact second-order unsplit perfectly matched layer that is easier to implement in finite-element methods. Moreover, to avoid errors caused by the quasi-static approximation, we directly solve the full-wave electromagnetic equations when simulating the electromagnetic wavefield. Our computational domain is discretized using arbitrary quadrilateral meshes, which offers possibilities in handling undulating terrain and complex anomalies in the underground. To ensure computational accuracy, we utilized biquadratic interpolation as our finite-element basis functions, which provides higher precision compared to bilinear interpolation. We validate our time-domain finite-element method by comparing its results with analytical solutions for a layered model. We also apply our algorithm to the modelling of an underground aquifer and a complex anomalous hydrocarbon reservoir under undulating terrain.</p>","PeriodicalId":12793,"journal":{"name":"Geophysical Prospecting","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Prospecting","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.13518","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

A time-domain finite-element method based on an arbitrary quadrilateral mesh is proposed to simulate two dimensional seismoelectric and electroseismic waves in SHTE mode. By decoupling the electrokinetic coupling equation, we can solve seismic waves and electromagnetic waves independently. For the simulation of seismic wavefield, we utilize a more compact second-order unsplit perfectly matched layer that is easier to implement in finite-element methods. Moreover, to avoid errors caused by the quasi-static approximation, we directly solve the full-wave electromagnetic equations when simulating the electromagnetic wavefield. Our computational domain is discretized using arbitrary quadrilateral meshes, which offers possibilities in handling undulating terrain and complex anomalies in the underground. To ensure computational accuracy, we utilized biquadratic interpolation as our finite-element basis functions, which provides higher precision compared to bilinear interpolation. We validate our time-domain finite-element method by comparing its results with analytical solutions for a layered model. We also apply our algorithm to the modelling of an underground aquifer and a complex anomalous hydrocarbon reservoir under undulating terrain.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于任意四边形网格的时域有限元法用于二维 SHTE 模式地震波和电地震波建模
提出了一种基于任意四边形网格的时域有限元方法,用于模拟 SHTE 模式下的二维地震波和电地震波。通过解耦电动耦合方程,我们可以独立求解地震波和电磁波。对于地震波场的模拟,我们采用了更紧凑的二阶非分裂完全匹配层,这在有限元方法中更容易实现。此外,为了避免准静态近似造成的误差,我们在模拟电磁波场时直接求解全波电磁方程。我们的计算域采用任意四边形网格进行离散,这为处理起伏地形和地下复杂异常提供了可能。为确保计算精度,我们使用了双二次插值作为有限元基函数,与双线性插值相比,它具有更高的精度。我们将时域有限元方法的结果与分层模型的分析解进行了比较,从而验证了该方法的有效性。我们还将算法应用于地下含水层和起伏地形下复杂异常油气藏的建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geophysical Prospecting
Geophysical Prospecting 地学-地球化学与地球物理
CiteScore
4.90
自引率
11.50%
发文量
118
审稿时长
4.5 months
期刊介绍: Geophysical Prospecting publishes the best in primary research on the science of geophysics as it applies to the exploration, evaluation and extraction of earth resources. Drawing heavily on contributions from researchers in the oil and mineral exploration industries, the journal has a very practical slant. Although the journal provides a valuable forum for communication among workers in these fields, it is also ideally suited to researchers in academic geophysics.
期刊最新文献
Issue Information Simultaneous inversion of four physical parameters of hydrate reservoir for high accuracy porosity estimation A mollifier approach to seismic data representation Analytic solutions for effective elastic moduli of isotropic solids containing oblate spheroid pores with critical porosity An efficient pseudoelastic pure P-mode wave equation and the implementation of the free surface boundary condition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1