Edgar Gutiérrez Infante, Felipe Tadeu Fiorini Gomide, Argimiro Resende Secchi, Luiz Fernando Leite, Adelaide María de Souza Antunes, Alberth Renne Gonzalez Caranton
{"title":"Diesel production from lignocellulosic residues: trends, challenges and opportunities","authors":"Edgar Gutiérrez Infante, Felipe Tadeu Fiorini Gomide, Argimiro Resende Secchi, Luiz Fernando Leite, Adelaide María de Souza Antunes, Alberth Renne Gonzalez Caranton","doi":"10.1002/bbb.2619","DOIUrl":null,"url":null,"abstract":"<p>This article aims to review the various techniques used to produce diesel from lignocellulosic biomass. Data were collected using the Web of Science database to identify trends, barriers, and prospects associated with the alternative methods used. The analysis reviewed 359 papers published between 2006 and 2021, focusing on three key areas: biomass pretreatment, biomass conversion, and biorefining. Pretreatment technologies require extensive research to reduce excessive energy and reagent consumption, thereby reducing overall costs. Fast pyrolysis and lipid-producing microorganisms have been shown to be the most promising conversion routes due to their versatility in utilizing different lignocellulosic residues and producing a wide range of marketable co-products. The most widely used method used for refining is hydroprocessing coupled with catalysts, with the objective of improving bio-oil quality. Two of the main challenges are the excessive cost of the overall process and the limitations imposed by the technology. These limitations require processing optimization to achieve sustainable production and valuable co-products. The growth of lignocellulosic diesel production will depend on the integration with other biodiesel and biofuel production processes by the optimization of new processes and the generation of new bioproducts to increase efficiency and reduce costs for commercial viability.</p>","PeriodicalId":55380,"journal":{"name":"Biofuels Bioproducts & Biorefining-Biofpr","volume":"18 5","pages":"1711-1738"},"PeriodicalIF":3.2000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofuels Bioproducts & Biorefining-Biofpr","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bbb.2619","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This article aims to review the various techniques used to produce diesel from lignocellulosic biomass. Data were collected using the Web of Science database to identify trends, barriers, and prospects associated with the alternative methods used. The analysis reviewed 359 papers published between 2006 and 2021, focusing on three key areas: biomass pretreatment, biomass conversion, and biorefining. Pretreatment technologies require extensive research to reduce excessive energy and reagent consumption, thereby reducing overall costs. Fast pyrolysis and lipid-producing microorganisms have been shown to be the most promising conversion routes due to their versatility in utilizing different lignocellulosic residues and producing a wide range of marketable co-products. The most widely used method used for refining is hydroprocessing coupled with catalysts, with the objective of improving bio-oil quality. Two of the main challenges are the excessive cost of the overall process and the limitations imposed by the technology. These limitations require processing optimization to achieve sustainable production and valuable co-products. The growth of lignocellulosic diesel production will depend on the integration with other biodiesel and biofuel production processes by the optimization of new processes and the generation of new bioproducts to increase efficiency and reduce costs for commercial viability.
期刊介绍:
Biofuels, Bioproducts and Biorefining is a vital source of information on sustainable products, fuels and energy. Examining the spectrum of international scientific research and industrial development along the entire supply chain, The journal publishes a balanced mixture of peer-reviewed critical reviews, commentary, business news highlights, policy updates and patent intelligence. Biofuels, Bioproducts and Biorefining is dedicated to fostering growth in the biorenewables sector and serving its growing interdisciplinary community by providing a unique, systems-based insight into technologies in these fields as well as their industrial development.