{"title":"Mechanism analysis and mixing characterization of variable-speed mechanical mixing enhancement","authors":"Yuchen Lin, Shibo Wang, Hua Wang, Jianxin Xu, Q. Xiao","doi":"10.1515/ijcre-2023-0239","DOIUrl":null,"url":null,"abstract":"\n In response to the observed phenomenon of poor fluid mixing within the reactor, this study proposes a novel mixing method to enhance fluid mixing efficiency. In this study, numerical simulation and purification tests were carried out for the purification of zinc sulfate solution. Numerical simulations were conducted to compare the effects of variable-speed stirring and uniform-speed stirring on mixing efficiency, considering both momentum transfer process and mass transfer process. The purification test further demonstrated a significant improvement in the reaction rate under variable-speed stirring, as evidenced by the analysis of purification efficiency and microscopic morphology. It was elaborated that the enhancement mechanism of variable-speed stirring involved disrupting the periodic order structure in the tank, leading to the generation of a multi-scale vortex that increased stirring kinetic energy to form a shear force. This force contributed to reducing the velocity slip between the impurity ions and zinc particles, consequently decreasing reaction time and enhancing purification rate. The results indicated that sinusoidal stirring yielded the most effective mixing. When implemented in practical production settings, it enhanced dimensionless mixing efficiency by 24.83 % compared to the homogeneous stirring system. Additionally, it reduced reaction time by 15.47 % and decreased mixing energy per unit volume by 32.38 %, while simultaneously lowering energy consumption by 24.77 %.","PeriodicalId":51069,"journal":{"name":"International Journal of Chemical Reactor Engineering","volume":" 365","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Reactor Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijcre-2023-0239","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
In response to the observed phenomenon of poor fluid mixing within the reactor, this study proposes a novel mixing method to enhance fluid mixing efficiency. In this study, numerical simulation and purification tests were carried out for the purification of zinc sulfate solution. Numerical simulations were conducted to compare the effects of variable-speed stirring and uniform-speed stirring on mixing efficiency, considering both momentum transfer process and mass transfer process. The purification test further demonstrated a significant improvement in the reaction rate under variable-speed stirring, as evidenced by the analysis of purification efficiency and microscopic morphology. It was elaborated that the enhancement mechanism of variable-speed stirring involved disrupting the periodic order structure in the tank, leading to the generation of a multi-scale vortex that increased stirring kinetic energy to form a shear force. This force contributed to reducing the velocity slip between the impurity ions and zinc particles, consequently decreasing reaction time and enhancing purification rate. The results indicated that sinusoidal stirring yielded the most effective mixing. When implemented in practical production settings, it enhanced dimensionless mixing efficiency by 24.83 % compared to the homogeneous stirring system. Additionally, it reduced reaction time by 15.47 % and decreased mixing energy per unit volume by 32.38 %, while simultaneously lowering energy consumption by 24.77 %.
期刊介绍:
The International Journal of Chemical Reactor Engineering covers the broad fields of theoretical and applied reactor engineering. The IJCRE covers topics drawn from the substantial areas of overlap between catalysis, reaction and reactor engineering. The journal is presently edited by Hugo de Lasa and Charles Xu, counting with an impressive list of Editorial Board leading specialists in chemical reactor engineering. Authors include notable international professors and R&D industry leaders.