{"title":"A Systematic Literature Review on Graphics Processing Unit Accelerated Realm of High-Performance Computing","authors":"Rajat Suvra Das, Vikas Gupta","doi":"10.47941/ijce.1813","DOIUrl":null,"url":null,"abstract":"GPUs (Graphics Processing Units) are widely used due to their impressive computational power and parallel computing ability.It have shown significant potential in improving the performance of HPC applications. This is due to their highly parallel architecture, which allows for the execution of multiple tasks simultaneously. However, GPU computing is synonymous with CUDA in providing applications for GPU devices. This offers enhanced development tools and comprehensive documentation to increase performance, while AMD’s ROCm platform features an application programming interface compatible with CUDA. Hence, the main objective of the systematic literature review is to thoroughly analyze and compute the performance characteristics of two prominent GPU computing frameworks, namely NVIDIA's CUDA and AMD's ROCm (Radeon Open Compute). By meticulously examining the strengths, weaknesses, and overall performance capabilities of CUDA and ROCm, a deeper understanding of these concepts is gained and will benefit researchers. The purpose of the research on GPU accelerated HPC is to provide a comprehensive and unbiased overview of the current state of research and development in this area. It can help researchers, practitioners, and policymakers understand the role of GPUs in HPC and facilitate evidence-based decision making. In addition, different real-time applications of CUDA and ROCm platforms are also discussed to explore potential performance benefits and trade-offs in leveraging these techniques. The insights provided by the study will empower the way to make well-informed decisions when choosing between CUDA and ROCm approaches that apply to real-world software.","PeriodicalId":198033,"journal":{"name":"International Journal of Computing and Engineering","volume":" October","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computing and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47941/ijce.1813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
GPUs (Graphics Processing Units) are widely used due to their impressive computational power and parallel computing ability.It have shown significant potential in improving the performance of HPC applications. This is due to their highly parallel architecture, which allows for the execution of multiple tasks simultaneously. However, GPU computing is synonymous with CUDA in providing applications for GPU devices. This offers enhanced development tools and comprehensive documentation to increase performance, while AMD’s ROCm platform features an application programming interface compatible with CUDA. Hence, the main objective of the systematic literature review is to thoroughly analyze and compute the performance characteristics of two prominent GPU computing frameworks, namely NVIDIA's CUDA and AMD's ROCm (Radeon Open Compute). By meticulously examining the strengths, weaknesses, and overall performance capabilities of CUDA and ROCm, a deeper understanding of these concepts is gained and will benefit researchers. The purpose of the research on GPU accelerated HPC is to provide a comprehensive and unbiased overview of the current state of research and development in this area. It can help researchers, practitioners, and policymakers understand the role of GPUs in HPC and facilitate evidence-based decision making. In addition, different real-time applications of CUDA and ROCm platforms are also discussed to explore potential performance benefits and trade-offs in leveraging these techniques. The insights provided by the study will empower the way to make well-informed decisions when choosing between CUDA and ROCm approaches that apply to real-world software.