Rui Xu, Emmanuel Njumbe Ediage, Tom Verhaeghe, Jan Snoeys, Lieve Dillen
{"title":"Therapeutic siRNA Loaded to RISC as Single and Double Strands Requires an Appropriate Quantitative Assay for RISC PK Assessment.","authors":"Rui Xu, Emmanuel Njumbe Ediage, Tom Verhaeghe, Jan Snoeys, Lieve Dillen","doi":"10.1089/nat.2023.0067","DOIUrl":null,"url":null,"abstract":"In recent years, therapeutic siRNA projects are booming in the biotech and pharmaceutical industries. As these drugs act by silencing the target gene expression, a critical step is the binding of antisense strands of siRNA to RNA-induced silencing complex (RISC) and then degrading their target mRNA. However, data that we recently obtained suggest that double-stranded siRNA can also load to RISC. This brings a new understanding of the mechanism of RISC loading which may have a potential impact on how quantification of RISC loaded siRNA should be performed. By combining RNA immune precipitation and probe-based hybridization LC-fluorescence approach, we have developed a novel assay that can accurately quantify the RISC-bound antisense strand, irrespective of which form (double-stranded or single-stranded) is loaded on RISC. In addition, this novel assay can discriminate between the 5'-phosphorylated antisense (5'p-AS) and the nonphosphorylated forms, therefore specifically quantifying the RISC bound 5'p-AS. In comparison, stem-loop qPCR assay does not provide discrimination and accurate quantification when the oligonucleotide analyte exists as a mixture of double and single-stranded forms. Taking together, RISC loading assay with probe-hybridization LC-fluorescence technique would be a more accurate and specific quantitative approach for RISC-associated pharmacokinetic assessment.","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":" 59","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic acid therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/nat.2023.0067","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, therapeutic siRNA projects are booming in the biotech and pharmaceutical industries. As these drugs act by silencing the target gene expression, a critical step is the binding of antisense strands of siRNA to RNA-induced silencing complex (RISC) and then degrading their target mRNA. However, data that we recently obtained suggest that double-stranded siRNA can also load to RISC. This brings a new understanding of the mechanism of RISC loading which may have a potential impact on how quantification of RISC loaded siRNA should be performed. By combining RNA immune precipitation and probe-based hybridization LC-fluorescence approach, we have developed a novel assay that can accurately quantify the RISC-bound antisense strand, irrespective of which form (double-stranded or single-stranded) is loaded on RISC. In addition, this novel assay can discriminate between the 5'-phosphorylated antisense (5'p-AS) and the nonphosphorylated forms, therefore specifically quantifying the RISC bound 5'p-AS. In comparison, stem-loop qPCR assay does not provide discrimination and accurate quantification when the oligonucleotide analyte exists as a mixture of double and single-stranded forms. Taking together, RISC loading assay with probe-hybridization LC-fluorescence technique would be a more accurate and specific quantitative approach for RISC-associated pharmacokinetic assessment.
期刊介绍:
Nucleic Acid Therapeutics is the leading journal in its field focusing on cutting-edge basic research, therapeutic applications, and drug development using nucleic acids or related compounds to alter gene expression. The Journal examines many new approaches for using nucleic acids as therapeutic agents or in modifying nucleic acids for therapeutic purposes including: oligonucleotides, gene modification, aptamers, RNA nanoparticles, and ribozymes.