Jian Lu, Lin Huang, Xiaoxia Liu, Ning Xie, Qingtang Jiang, Yuru Zou
{"title":"3D Poissonian image deblurring via patch-based tensor logarithmic Schatten-p minimization","authors":"Jian Lu, Lin Huang, Xiaoxia Liu, Ning Xie, Qingtang Jiang, Yuru Zou","doi":"10.1088/1361-6420/ad40c9","DOIUrl":null,"url":null,"abstract":"\n In medical and biological image processing, multi-dimensional images are often corrupted by blur and Poisson noise. In this paper, we first propose a new tensor logarithmic Schatten-$p$ (t-log-$S_p$) low-rank measure and a tensor iteratively reweighted Schatten-$p$ minimization (t-IRSpM) algorithm for minimizing such measure. Furthermore, we adopt this low-rank measure to regularize the non-local tensors formed by similar 3D image patches and develop a patch-based non-local low-rank model. The data fidelity term of the model characterizes the Poisson noise distribution and blur operator. The optimization model is further solved by an alternating minimization technique combined with variable splitting. Experimental results tested on 3D fluorescence microscope images show that the proposed patch-based tensor logarithmic Schatten-$p$ minimization (TLSpM) method outperforms state-of-the-art methods in terms of image evaluation metrics and visual quality.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad40c9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
In medical and biological image processing, multi-dimensional images are often corrupted by blur and Poisson noise. In this paper, we first propose a new tensor logarithmic Schatten-$p$ (t-log-$S_p$) low-rank measure and a tensor iteratively reweighted Schatten-$p$ minimization (t-IRSpM) algorithm for minimizing such measure. Furthermore, we adopt this low-rank measure to regularize the non-local tensors formed by similar 3D image patches and develop a patch-based non-local low-rank model. The data fidelity term of the model characterizes the Poisson noise distribution and blur operator. The optimization model is further solved by an alternating minimization technique combined with variable splitting. Experimental results tested on 3D fluorescence microscope images show that the proposed patch-based tensor logarithmic Schatten-$p$ minimization (TLSpM) method outperforms state-of-the-art methods in terms of image evaluation metrics and visual quality.