Stapled peptides: targeting protein-protein interactions in drug development

Qian Zhang, Ziyang Wang, Xiaohan Mei, Quan Chen, Chunqiu Zhang
{"title":"Stapled peptides: targeting protein-protein interactions in drug development","authors":"Qian Zhang, Ziyang Wang, Xiaohan Mei, Quan Chen, Chunqiu Zhang","doi":"10.37349/eds.2024.00041","DOIUrl":null,"url":null,"abstract":"Protein-protein interactions (PPIs) impersonate a significant role in many biological processes and are potential therapeutic targets in numerous human diseases. Stapled peptides, as the most promising therapeutic candidate for interfering with PPIs, have a higher degree of α-helicity, improved binding affinity, more resistance to proteolytic digestion, longer serum half-life, and enhanced cell permeability, which exhibits higher pharmacological activity compared with small molecule drugs and biologics. This review outlined the continuous progress of stapled peptides mainly concerning the design principle, structural stability, bioactivity, cell permeability, and potential applications in therapeutics, which is aimed at providing a broad reference for the design and exploration of stapled peptides with enhanced biological and pharmacokinetic properties as the next-generation therapeutic peptide drugs targeting various diseases.","PeriodicalId":72998,"journal":{"name":"Exploration of drug science","volume":" 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exploration of drug science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37349/eds.2024.00041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Protein-protein interactions (PPIs) impersonate a significant role in many biological processes and are potential therapeutic targets in numerous human diseases. Stapled peptides, as the most promising therapeutic candidate for interfering with PPIs, have a higher degree of α-helicity, improved binding affinity, more resistance to proteolytic digestion, longer serum half-life, and enhanced cell permeability, which exhibits higher pharmacological activity compared with small molecule drugs and biologics. This review outlined the continuous progress of stapled peptides mainly concerning the design principle, structural stability, bioactivity, cell permeability, and potential applications in therapeutics, which is aimed at providing a broad reference for the design and exploration of stapled peptides with enhanced biological and pharmacokinetic properties as the next-generation therapeutic peptide drugs targeting various diseases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带钉肽:在药物开发中瞄准蛋白质与蛋白质之间的相互作用
蛋白质-蛋白质相互作用(PPIs)在许多生物过程中扮演着重要角色,是许多人类疾病的潜在治疗靶点。钉钉肽作为最有希望干扰PPIs的候选治疗药物,具有更高的α-螺旋度、更强的结合亲和力、更强的抗蛋白酶消化能力、更长的血清半衰期和更强的细胞渗透性,与小分子药物和生物制剂相比具有更高的药理活性。本综述主要从设计原理、结构稳定性、生物活性、细胞渗透性以及在治疗中的潜在应用等方面概述了钉状肽的研究进展,旨在为设计和探索具有更强生物学和药代动力学特性的钉状肽作为针对各种疾病的下一代治疗肽药物提供广泛的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced breast cancer cell targeting: RGD integrin ligand potentiates RWQWRWQWR’s cytotoxicity and inhibits migration Plants and fungi metabolites as novel autophagy inducers and senescence inhibitors Pain management for the neurosurgical patient in spinal procedures: overview of historic and new modalities Interaction of norsecurinine-type monomeric and dimeric alkaloids with α-tubulin: a molecular docking study Stryphnodendron adstringens have a modulatory effect on inflammatory cytokines markers of in vitro activated macrophages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1