AI/ML driven intrusion detection framework for IoT enabled cold storage monitoring system

IF 1.5 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Security and Privacy Pub Date : 2024-04-18 DOI:10.1002/spy2.400
M. Prasad, Pankaj Pal, Sachin Tripathi, Keshav P. Dahal
{"title":"AI/ML driven intrusion detection framework for IoT enabled cold storage monitoring system","authors":"M. Prasad, Pankaj Pal, Sachin Tripathi, Keshav P. Dahal","doi":"10.1002/spy2.400","DOIUrl":null,"url":null,"abstract":"An IoT‐based monitoring system remotely controls and manages intelligent environments. Due to wireless communication, deployed sensor nodes are more vulnerable to attacks. An intrusion detection system is an efficient mechanism to detect malicious traffic and prevent abnormal activities. This article suggests an intrusion detection framework for the cold storage monitoring system. The temperature is the main parameter that affects the environment and harms stored products. A malicious node injects false data that manipulates temperature and forwards manipulated data. It also floods the data to neighbor nodes. In this work, data are generated and collected for intrusion detection. Two machine learning techniques have been applied: supervised learning (Bayesian rough set) and unsupervised learning (micro‐clustering). The proposed method shows better performance than existing methods.","PeriodicalId":29939,"journal":{"name":"Security and Privacy","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Security and Privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/spy2.400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

An IoT‐based monitoring system remotely controls and manages intelligent environments. Due to wireless communication, deployed sensor nodes are more vulnerable to attacks. An intrusion detection system is an efficient mechanism to detect malicious traffic and prevent abnormal activities. This article suggests an intrusion detection framework for the cold storage monitoring system. The temperature is the main parameter that affects the environment and harms stored products. A malicious node injects false data that manipulates temperature and forwards manipulated data. It also floods the data to neighbor nodes. In this work, data are generated and collected for intrusion detection. Two machine learning techniques have been applied: supervised learning (Bayesian rough set) and unsupervised learning (micro‐clustering). The proposed method shows better performance than existing methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向物联网冷库监控系统的人工智能/ML 驱动型入侵检测框架
基于物联网的监控系统可远程控制和管理智能环境。由于采用无线通信,部署的传感器节点更容易受到攻击。入侵检测系统是检测恶意流量和防止异常活动的有效机制。本文为冷库监控系统提出了一种入侵检测框架。温度是影响环境和损害存储产品的主要参数。恶意节点会注入操纵温度的虚假数据,并转发被操纵的数据。它还会将数据泛滥到邻近节点。在这项工作中,生成并收集了用于入侵检测的数据。应用了两种机器学习技术:有监督学习(贝叶斯粗糙集)和无监督学习(微聚类)。与现有方法相比,所提出的方法显示出更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
5.30%
发文量
80
期刊最新文献
IoT malware detection using static and dynamic analysis techniques: A systematic literature review An approach for mitigating cognitive load in password management by integrating QR codes and steganography Cryptographic methods for secured communication in SDN‐based VANETs: A performance analysis Exploring security and privacy enhancement technologies in the Internet of Things: A comprehensive review Research on privacy leakage of celebrity's ID card number based on real‐name authentication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1