{"title":"Performance optimization of a SERF atomic magnetometer based on flat-top light beam","authors":"Ziqi Yuan, Junjian Tang, Shudong Lin, Y. Zhai","doi":"10.1088/1674-1056/ad401b","DOIUrl":null,"url":null,"abstract":"\n In this study, we explore the impact of pumping beams with different transverse intensity profiles on the performance of the spin-exchange relaxation-free (SERF) atomic magnetometers (AMs). We conduct experiments comparing the traditional Gaussian optically-pumped AM with that utilizing the flat-top optically-pumped (FTOP) method. Our findings reveal that the FTOP-based approach outperforms the conventional method, exhibiting a larger response, a narrower magnetic resonance linewidth, and a superior low-frequency noise performance. Specifically, the use of FTOP method leads to a 16% enhancement in average sensitivity within 1-30 Hz frequency range. Our research emphasizes the significance of achieving transverse polarization uniformity in AMs, providing insights for future optimization efforts and sensitivity improvements in miniaturized magnetometers.","PeriodicalId":10253,"journal":{"name":"Chinese Physics B","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-1056/ad401b","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we explore the impact of pumping beams with different transverse intensity profiles on the performance of the spin-exchange relaxation-free (SERF) atomic magnetometers (AMs). We conduct experiments comparing the traditional Gaussian optically-pumped AM with that utilizing the flat-top optically-pumped (FTOP) method. Our findings reveal that the FTOP-based approach outperforms the conventional method, exhibiting a larger response, a narrower magnetic resonance linewidth, and a superior low-frequency noise performance. Specifically, the use of FTOP method leads to a 16% enhancement in average sensitivity within 1-30 Hz frequency range. Our research emphasizes the significance of achieving transverse polarization uniformity in AMs, providing insights for future optimization efforts and sensitivity improvements in miniaturized magnetometers.
期刊介绍:
Chinese Physics B is an international journal covering the latest developments and achievements in all branches of physics worldwide (with the exception of nuclear physics and physics of elementary particles and fields, which is covered by Chinese Physics C). It publishes original research papers and rapid communications reflecting creative and innovative achievements across the field of physics, as well as review articles covering important accomplishments in the frontiers of physics.
Subject coverage includes:
Condensed matter physics and the physics of materials
Atomic, molecular and optical physics
Statistical, nonlinear and soft matter physics
Plasma physics
Interdisciplinary physics.