Double attention Res-U-Net-based Deep Neural Network Model for Automatic Detection of Tuberculosis in Human Lungs

IF 0.8 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING International Journal of Image and Graphics Pub Date : 2024-04-18 DOI:10.1142/s0219467825500731
M. Balamurugan, R. Balamurugan
{"title":"Double attention Res-U-Net-based Deep Neural Network Model for Automatic Detection of Tuberculosis in Human Lungs","authors":"M. Balamurugan, R. Balamurugan","doi":"10.1142/s0219467825500731","DOIUrl":null,"url":null,"abstract":"Tuberculosis (TB) stands as the leading cause of death and a significant threat to humanity in the contemporary world. Early detection of TB is crucial for precise identification and treatment, and Chest X-Rays (CXR) serve as a valuable tool in this regard. Computer-Aided Diagnosis (CAD) systems play a vital role in easing the classification process of active and latent TB. This paper uses an approach called the Double Attention Res-U-Net-based Deep Neural Network (DARUNDNN) to enhance TB detection in the lungs. The detection process involves pre-processing, noise removal, image level balancing, the application of the DARUNDNN model and using the Whale Optimization Algorithm (WOA) for improved accuracy. Experimental validation using Montgomery Country (MC), Shenzhen China (SC), and NIH CXR Datasets compares the results with U-Net, AlexNet, GoogleNet, and convolutional neural network (CNN) models. The findings, particularly from the SC dataset, demonstrate the efficiency of the proposed DARUNDNN model with an accuracy of 98.6%, specificity of 96.24%, and sensitivity of 97.66%, outperforming benchmarked deep learning models. Additionally, validation with the MC dataset reveals an excellent accuracy of 98%, specificity of 97.56%, and sensitivity of 98.52%.","PeriodicalId":44688,"journal":{"name":"International Journal of Image and Graphics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219467825500731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Tuberculosis (TB) stands as the leading cause of death and a significant threat to humanity in the contemporary world. Early detection of TB is crucial for precise identification and treatment, and Chest X-Rays (CXR) serve as a valuable tool in this regard. Computer-Aided Diagnosis (CAD) systems play a vital role in easing the classification process of active and latent TB. This paper uses an approach called the Double Attention Res-U-Net-based Deep Neural Network (DARUNDNN) to enhance TB detection in the lungs. The detection process involves pre-processing, noise removal, image level balancing, the application of the DARUNDNN model and using the Whale Optimization Algorithm (WOA) for improved accuracy. Experimental validation using Montgomery Country (MC), Shenzhen China (SC), and NIH CXR Datasets compares the results with U-Net, AlexNet, GoogleNet, and convolutional neural network (CNN) models. The findings, particularly from the SC dataset, demonstrate the efficiency of the proposed DARUNDNN model with an accuracy of 98.6%, specificity of 96.24%, and sensitivity of 97.66%, outperforming benchmarked deep learning models. Additionally, validation with the MC dataset reveals an excellent accuracy of 98%, specificity of 97.56%, and sensitivity of 98.52%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 Res-U-Net 的双重关注深度神经网络模型用于人体肺部结核病的自动检测
结核病(TB)是当今世界的主要死亡原因,也是对人类的重大威胁。结核病的早期发现对于精确识别和治疗至关重要,而胸部 X 光片(CXR)则是这方面的重要工具。计算机辅助诊断(CAD)系统在简化活动性和潜伏性肺结核的分类过程中发挥着至关重要的作用。本文采用一种名为基于双注意 Res-U-Net 的深度神经网络 (DARUNDNN) 的方法来增强肺部结核病的检测。检测过程包括预处理、去噪、图像水平平衡、应用 DARUNDNN 模型和使用鲸鱼优化算法 (WOA) 以提高准确性。利用蒙哥马利国家(MC)、中国深圳(SC)和美国国立卫生研究院 CXR 数据集进行了实验验证,将结果与 U-Net、AlexNet、GoogleNet 和卷积神经网络(CNN)模型进行了比较。研究结果,尤其是深圳数据集的结果,证明了所提出的 DARUNDNN 模型的效率,其准确率为 98.6%,特异性为 96.24%,灵敏度为 97.66%,优于基准深度学习模型。此外,利用 MC 数据集进行的验证表明,该模型的准确率为 98%,特异性为 97.56%,灵敏度为 98.52%,表现出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Image and Graphics
International Journal of Image and Graphics COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
2.40
自引率
18.80%
发文量
67
期刊最新文献
Modified Whale Algorithm and Morley PSO-ML-Based Hyperparameter Optimization for Intrusion Detection A Novel Hybrid Attention-Based Dilated Network for Depression Classification Model from Multimodal Data Using Improved Heuristic Approach An Extensive Review on Lung Cancer Detection Models CMVT: ConVit Transformer Network Recombined with Convolutional Layer Two-Phase Speckle Noise Removal in US Images: Speckle Reducing Improved Anisotropic Diffusion and Optimal Bayes Threshold
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1