Guiding Wang, T. L. Rhodes, Q. Pratt, William A Peebles, Neal A Crocker, Rongjie Hong, M. E. Austin, M. V. Van Zeeland, Sterling P Smith
{"title":"Core electron temperature turbulence and transport during sawtooth oscillations in the DIII-D tokamak","authors":"Guiding Wang, T. L. Rhodes, Q. Pratt, William A Peebles, Neal A Crocker, Rongjie Hong, M. E. Austin, M. V. Van Zeeland, Sterling P Smith","doi":"10.1088/1741-4326/ad4046","DOIUrl":null,"url":null,"abstract":"\n Sawteeth are one of the concerning instabilities in ITER and future burning plasma experiments. Sawtooth dynamics and its interaction with broadband plasma turbulence has been a challenge for predictive simulations of core transport in future fusion devices. This study provides new observations of core turbulence behavior during sawtooth oscillations in DIII-D hydrogen L-mode neutral beam injection heated plasmas in an inner wall limited configuration. A strong correlation of electron temperature and density turbulence levels with the sawtooth oscillation phase has been observed at locations inside the Te inversion radius and/or safety factor q=1 magnetic surface. The Te turbulence amplitude in the core during the sawtooth ramp exhibits a critical Te gradient behavior inside but not near the Te inversion radius/q=1 magnetic surface. The most unstable mode calculated from the trapped gyro-landau fluid (TGLF) turbulence simulations reveal a change from low-k ion-type to low-k electron-type modes from pre- to post- sawtooth crash time periods.","PeriodicalId":503481,"journal":{"name":"Nuclear Fusion","volume":" 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-4326/ad4046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Sawteeth are one of the concerning instabilities in ITER and future burning plasma experiments. Sawtooth dynamics and its interaction with broadband plasma turbulence has been a challenge for predictive simulations of core transport in future fusion devices. This study provides new observations of core turbulence behavior during sawtooth oscillations in DIII-D hydrogen L-mode neutral beam injection heated plasmas in an inner wall limited configuration. A strong correlation of electron temperature and density turbulence levels with the sawtooth oscillation phase has been observed at locations inside the Te inversion radius and/or safety factor q=1 magnetic surface. The Te turbulence amplitude in the core during the sawtooth ramp exhibits a critical Te gradient behavior inside but not near the Te inversion radius/q=1 magnetic surface. The most unstable mode calculated from the trapped gyro-landau fluid (TGLF) turbulence simulations reveal a change from low-k ion-type to low-k electron-type modes from pre- to post- sawtooth crash time periods.
锯齿是国际热核聚变实验堆和未来燃烧等离子体实验中令人担忧的不稳定性之一。锯齿动力学及其与宽带等离子体湍流的相互作用一直是未来聚变装置中堆芯传输预测模拟的挑战。本研究提供了在内壁受限配置的 DIII-D 氢 L 模式中性束注入加热等离子体锯齿振荡过程中内核湍流行为的新观测结果。在Te反演半径和/或安全系数q=1磁面内的位置,观察到电子温度和密度湍流水平与锯齿振荡相位有很强的相关性。在锯齿斜坡期间,核心中的Te湍流振幅在Te反转半径/q=1磁面内部表现出临界Te梯度行为,而在Te反转半径/q=1磁面附近则没有。根据受困陀螺-朗道流体(TGLF)湍流模拟计算得出的最不稳定模式显示,从锯齿撞击前到锯齿撞击后的时间段内,低k离子型模式转变为低k电子型模式。