Optimization of data analysis models for low‐resource Eurasian languages using machine translation

HongYan Chen, Kim Kyung Yee
{"title":"Optimization of data analysis models for low‐resource Eurasian languages using machine translation","authors":"HongYan Chen, Kim Kyung Yee","doi":"10.1002/itl2.528","DOIUrl":null,"url":null,"abstract":"This study explores low‐resource language data translation models in the realms of multimedia teaching and cyber security. A rapid learning‐based neural machine translation (NMT) method is developed based on meta‐learning theory. Subsequently, the back translation method is employed to further improve the NMT model for low‐resource language data. Results indicate that the proposed low‐resource language NMT method based on meta‐learning achieves increased Bilingual Evaluation Understudy (BLEU) scores for three target tasks in a supervised environment. This study emphasizes the auxiliary role of meta‐learning theory in low‐resource language data translation, aiming to enhance the efficiency of translation models in utilizing information from low‐resource languages.","PeriodicalId":509592,"journal":{"name":"Internet Technology Letters","volume":" 30","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/itl2.528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores low‐resource language data translation models in the realms of multimedia teaching and cyber security. A rapid learning‐based neural machine translation (NMT) method is developed based on meta‐learning theory. Subsequently, the back translation method is employed to further improve the NMT model for low‐resource language data. Results indicate that the proposed low‐resource language NMT method based on meta‐learning achieves increased Bilingual Evaluation Understudy (BLEU) scores for three target tasks in a supervised environment. This study emphasizes the auxiliary role of meta‐learning theory in low‐resource language data translation, aiming to enhance the efficiency of translation models in utilizing information from low‐resource languages.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器翻译优化低资源欧亚语言的数据分析模型
本研究探讨了多媒体教学和网络安全领域的低资源语言数据翻译模型。研究基于元学习理论,开发了一种基于快速学习的神经机器翻译(NMT)方法。随后,采用反向翻译方法进一步改进了低资源语言数据的神经机器翻译模型。结果表明,所提出的基于元学习的低资源语言 NMT 方法在有监督的环境中提高了三个目标任务的双语评估(BLEU)分数。本研究强调了元学习理论在低资源语言数据翻译中的辅助作用,旨在提高翻译模型利用低资源语言信息的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Innovative resource allocation mechanism for optimizing 5G multi user‐massive multiple input multiple output system An Internet of Things security‐based E parking framework for smart city application using Lora Performance evaluation and investigation of diffraction optical elements effect on bit error rate of free space optics and performance investigation of space uplink wireless optical communication under varying atmospheric turbulence conditions Design and analysis of stochastic 5G new radio LDPC decoder using adaptive sparse quantization kernel least mean square algorithm for optical satellite communications Research on the application of English short essay reading emotional analysis in online English teaching under IoT scenario
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1