Constructing a Fraud Risk Early Warning Model for Chinese Listed Companies Driven by Heterogeneous Data

Yunbai Chen
{"title":"Constructing a Fraud Risk Early Warning Model for Chinese Listed Companies Driven by Heterogeneous Data","authors":"Yunbai Chen","doi":"10.61935/aedmr.2.1.2024.p122","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a model for early warning of fraud risk among Chinese listed companies, leveraging the capabilities of heterogeneous data analysis. Given the complexity and multidimensionality of corporate fraud, our model integrates multiple data sources including financial reports, market behavior, and the sentiment of annual report texts, representing diverse sets of heterogeneous data. This approach employs advanced data processing techniques to handle and amalgamate heterogeneous data, ensuring robustness and accuracy. Utilizing machine learning algorithms, the model not only detects potential fraud signals but also quantifies the level of risk, providing stakeholders with a dynamic predictive tool. This research offers a comprehensive data-driven approach to fraud detection in the corporate sector, underscoring the importance of meticulous risk assessment using various data streams. It marks a critical step in proactive fraud management in an increasingly complex financial environment.","PeriodicalId":502155,"journal":{"name":"Advances in Economic Development and Management Research","volume":" 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Economic Development and Management Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61935/aedmr.2.1.2024.p122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a model for early warning of fraud risk among Chinese listed companies, leveraging the capabilities of heterogeneous data analysis. Given the complexity and multidimensionality of corporate fraud, our model integrates multiple data sources including financial reports, market behavior, and the sentiment of annual report texts, representing diverse sets of heterogeneous data. This approach employs advanced data processing techniques to handle and amalgamate heterogeneous data, ensuring robustness and accuracy. Utilizing machine learning algorithms, the model not only detects potential fraud signals but also quantifies the level of risk, providing stakeholders with a dynamic predictive tool. This research offers a comprehensive data-driven approach to fraud detection in the corporate sector, underscoring the importance of meticulous risk assessment using various data streams. It marks a critical step in proactive fraud management in an increasingly complex financial environment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
构建异构数据驱动的中国上市公司欺诈风险预警模型
本文利用异构数据分析能力,提出了中国上市公司欺诈风险预警模型。鉴于企业欺诈的复杂性和多维性,我们的模型整合了多种数据源,包括财务报告、市场行为和年报文本情感,代表了不同的异构数据集。这种方法采用了先进的数据处理技术来处理和合并异构数据,确保了数据的稳健性和准确性。利用机器学习算法,该模型不仅能检测潜在的欺诈信号,还能量化风险水平,为利益相关者提供动态预测工具。这项研究为企业部门的欺诈检测提供了一种全面的数据驱动方法,强调了利用各种数据流进行细致风险评估的重要性。它标志着在日益复杂的金融环境中,主动欺诈管理迈出了关键一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spatio-temporal changes of rice cropping system in Anhui Province from 2010 to 2020 The Influence of Digital Economy Development and Household Consumption Upgrading on Industrial Structure Upgrading Narrative and aesthetic features of micro-short plays on short video platforms: -A case study of Douyin micro-short plays Flexible Employment for Generation Z Youth: Characteristics and Challenges URBAN RESONANCE: Reconsideration of Public Art and Civic Spaces in Financial Districts in the Post-COVID-19 Era
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1