Feasibility Enterprise Time and Attendance System Using Artificial Vision Based on Neural Networks with Python and Raspberry Pi

Alex Núñez, Johnny Jácome, Kerly Vaca, Braulio Balseca, Ramiro Jara
{"title":"Feasibility Enterprise Time and Attendance System Using Artificial Vision Based on Neural Networks with Python and Raspberry Pi","authors":"Alex Núñez, Johnny Jácome, Kerly Vaca, Braulio Balseca, Ramiro Jara","doi":"10.18502/espoch.v4i1.15803","DOIUrl":null,"url":null,"abstract":"The objective of this article is to model a facial recognition system, using a Raspberry PI and Machine Learning (ML), for an attendance control system. Machine learning is a branch of artificial intelligence that allows the training of algorithms inspired by biological systems, using a considerable amount of information. In this work, the architecture of artificial neural networks with error backpropagation has been used, which have a certain similarity with human neurons and can extract knowledge from the input data. The algorithms have been implemented in Python and the results show a high precision for the classification and recognition of people. \nKeywords: facial recognition, Python, Raspberry PI, artificial neural networks, machine learning. \nResumen \nEl objetivo del presente artículo es el modelado de un sistema de reconocimiento facial, mediante la utilización de una Raspberry PI y Machine Learning (ML), para un sistema de control de asistencia. El aprendizaje de máquina o ML es una rama de la inteligencia artificial que permite el entrenamiento de algoritmos inspirados en sistemas biológicos, usando una cantidad considerable de información. En este trabajo, se ha usado la arquitectura de redes neuronales artificiales con retropropagación del error, las cuales guardan cierta similitud con las neuronas humanas y tienen la capacidad de extraer conocimiento a partir de los datos de entrada. Los algoritmos han sido implementados en Python y los resultados muestran una alta precisión para la clasificación y reconomiento de personas. \nPalabras Clave: Reconocimiento facial, Python, Raspberry PI, Redes Neuronales Artificiales, Machine Learning.","PeriodicalId":11737,"journal":{"name":"ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18502/espoch.v4i1.15803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The objective of this article is to model a facial recognition system, using a Raspberry PI and Machine Learning (ML), for an attendance control system. Machine learning is a branch of artificial intelligence that allows the training of algorithms inspired by biological systems, using a considerable amount of information. In this work, the architecture of artificial neural networks with error backpropagation has been used, which have a certain similarity with human neurons and can extract knowledge from the input data. The algorithms have been implemented in Python and the results show a high precision for the classification and recognition of people. Keywords: facial recognition, Python, Raspberry PI, artificial neural networks, machine learning. Resumen El objetivo del presente artículo es el modelado de un sistema de reconocimiento facial, mediante la utilización de una Raspberry PI y Machine Learning (ML), para un sistema de control de asistencia. El aprendizaje de máquina o ML es una rama de la inteligencia artificial que permite el entrenamiento de algoritmos inspirados en sistemas biológicos, usando una cantidad considerable de información. En este trabajo, se ha usado la arquitectura de redes neuronales artificiales con retropropagación del error, las cuales guardan cierta similitud con las neuronas humanas y tienen la capacidad de extraer conocimiento a partir de los datos de entrada. Los algoritmos han sido implementados en Python y los resultados muestran una alta precisión para la clasificación y reconomiento de personas. Palabras Clave: Reconocimiento facial, Python, Raspberry PI, Redes Neuronales Artificiales, Machine Learning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用基于神经网络的人工视觉与 Python 和 Raspberry Pi 的企业考勤系统的可行性
本文旨在利用树莓派(Raspberry PI)和机器学习(ML)为考勤控制系统建立一个面部识别系统模型。机器学习是人工智能的一个分支,它可以利用大量信息对受生物系统启发的算法进行训练。在这项工作中,使用了带有误差反向传播的人工神经网络架构,这种架构与人类神经元有一定的相似性,可以从输入数据中提取知识。算法已在 Python 中实现,结果表明对人的分类和识别具有很高的精度。关键词:人脸识别;Python;树莓派;人工神经网络;机器学习。摘要 本文旨在使用树莓派(Raspberry PI)和机器学习(ML)为考勤控制系统建立一个面部识别系统模型。机器学习(ML)是人工智能的一个分支,它可以利用大量的信息来训练受生物系统启发的算法。在这项工作中,我们使用了带有误差反向传播的人工神经网络架构,它与人类神经元有一定的相似性,能够从输入数据中提取知识。这些算法已在 Python 中实现,结果表明其对人的分类和识别具有很高的准确性。关键词: 人脸识别 Python 树莓派 人工神经网络 机器学习
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuel Chemical Composition Analysis Based on Additives Study of the Incidence of CO and CO2 Gas Emission Levels and Temperature, of the Automotive Air Conditioning System Inside an Interprovincial Bus at Different Environmental and Operating Conditions Performance Evaluation of an Electric Drive System Applied to a Three-wheel Hybrid Prototype Vehicle for Urban Mobility Development of a Method for Diagnosing Faults in Hydraulic Systems Using Artificial Neural Networks with Deep Learning Experimental Evaluation to Characterize Welded A36 Steel Joints Using the FCAW Process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1