{"title":"Altered functional connectivity strength of primary visual cortex in subjects with thyroid-associated ophthalmopathy.","authors":"C. Qi, Zhi Wen, Xin Huang","doi":"10.1097/WNR.0000000000002039","DOIUrl":null,"url":null,"abstract":"Our objective was to explore the disparities in the intrinsic functional connectivity (FC) patterns of primary visual cortex (V1) between patients with thyroid-associated ophthalmopathy (TAO) and healthy controls (HCs) utilizing resting-state functional MRI. Twenty-one patients with TAO (14 males and 7 females; mean age: 54.17 ± 4.83 years) and 21 well-matched HCs (14 males and 7 females; mean age: 55.17 ± 5.37 years) underwent functional MRI scans in the resting-state. We assessed modifications in the intrinsic FC patterns of the V1 in TAO patients using the FC method. Subsequently, the identified alterations in FC regions in the analysis were selected as classification features to distinguish TAO patients from HCs through the support vector machine (SVM) method. The results indicated that, in comparison to HCs, patients with TAO exhibited notably reduced FC values between the left V1 and the bilateral calcarine (CAL), lingual gyrus (LING) and superior occipital gyrus, as well as between the right V1 and the bilateral CAL/LING and the right cerebellum. Furthermore, the SVM classification model based on FC maps demonstrated effective performance in distinguishing TAO patients from HCs, achieving an accuracy of 61.9% using the FC of the left V1 and 64.29% using the FC of the right V1. Our study revealed that patients with TAO manifested disruptions in FC between the V1 and higher visual regions during rest. This might indicate that TAO patients could present with impaired top-down modulations, visual imagery and vision-motor function. These insights could be valuable in understanding the underlying neurobiological mechanisms of vision impairment in individuals with TAO.","PeriodicalId":19213,"journal":{"name":"Neuroreport","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroreport","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/WNR.0000000000002039","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Our objective was to explore the disparities in the intrinsic functional connectivity (FC) patterns of primary visual cortex (V1) between patients with thyroid-associated ophthalmopathy (TAO) and healthy controls (HCs) utilizing resting-state functional MRI. Twenty-one patients with TAO (14 males and 7 females; mean age: 54.17 ± 4.83 years) and 21 well-matched HCs (14 males and 7 females; mean age: 55.17 ± 5.37 years) underwent functional MRI scans in the resting-state. We assessed modifications in the intrinsic FC patterns of the V1 in TAO patients using the FC method. Subsequently, the identified alterations in FC regions in the analysis were selected as classification features to distinguish TAO patients from HCs through the support vector machine (SVM) method. The results indicated that, in comparison to HCs, patients with TAO exhibited notably reduced FC values between the left V1 and the bilateral calcarine (CAL), lingual gyrus (LING) and superior occipital gyrus, as well as between the right V1 and the bilateral CAL/LING and the right cerebellum. Furthermore, the SVM classification model based on FC maps demonstrated effective performance in distinguishing TAO patients from HCs, achieving an accuracy of 61.9% using the FC of the left V1 and 64.29% using the FC of the right V1. Our study revealed that patients with TAO manifested disruptions in FC between the V1 and higher visual regions during rest. This might indicate that TAO patients could present with impaired top-down modulations, visual imagery and vision-motor function. These insights could be valuable in understanding the underlying neurobiological mechanisms of vision impairment in individuals with TAO.
期刊介绍:
NeuroReport is a channel for rapid communication of new findings in neuroscience. It is a forum for the publication of short but complete reports of important studies that require very fast publication. Papers are accepted on the basis of the novelty of their finding, on their significance for neuroscience and on a clear need for rapid publication. Preliminary communications are not suitable for the Journal. Submitted articles undergo a preliminary review by the editor. Some articles may be returned to authors without further consideration. Those being considered for publication will undergo further assessment and peer-review by the editors and those invited to do so from a reviewer pool.
The core interest of the Journal is on studies that cast light on how the brain (and the whole of the nervous system) works.
We aim to give authors a decision on their submission within 2-5 weeks, and all accepted articles appear in the next issue to press.