Pin-on-Plate vs. Pin-on-Disk Wear Tests: Theoretical and Numerical Observations on the Initial Transient Phase

IF 3.1 3区 工程技术 Q2 ENGINEERING, MECHANICAL Lubricants Pub Date : 2024-04-17 DOI:10.3390/lubricants12040134
F. Di Puccio, Andrea Di Pietro, Lorenza Mattei
{"title":"Pin-on-Plate vs. Pin-on-Disk Wear Tests: Theoretical and Numerical Observations on the Initial Transient Phase","authors":"F. Di Puccio, Andrea Di Pietro, Lorenza Mattei","doi":"10.3390/lubricants12040134","DOIUrl":null,"url":null,"abstract":"Pin-on-plate and pin-on-disk wear tests are typically used for assessing the wear behavior of a given material coupling and estimating its wear coefficient using the Archard wear law. This study investigates differences in the Archard law for pin-on-plate and pin-on-disk cases, particularly for flat-ended pins. Both analytical and finite element models of the two tests were developed, assuming a 21 N normal load and a 50π mm sliding distance. In pin-on-disk simulations three different distances between pin and disk axes were considered, i.e., 1.25–2.5–5 times the pin radius (5 mm). For the results, wear volumes, pressure and wear depth maps were compared. Some interesting aspects arose: (i) the rotational effect in pin-on-disk tests causes higher wear volumes (up to 13%) with respect to pin-on-plate tests: the nearer the pin to the disk axis, the higher the wear volume; (ii) a simple quadratic formula is defined to correct the wear volume estimation for pin-on-disk tests; (iii) pressure redistribution occurs with higher values closer to disk axis, opposite to the wear depth trend. Due to the high computational costs, only the running-in phase of wear tests was considered. Numerical strategies are currently under investigation to extend this study to the steady state phase.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/lubricants12040134","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Pin-on-plate and pin-on-disk wear tests are typically used for assessing the wear behavior of a given material coupling and estimating its wear coefficient using the Archard wear law. This study investigates differences in the Archard law for pin-on-plate and pin-on-disk cases, particularly for flat-ended pins. Both analytical and finite element models of the two tests were developed, assuming a 21 N normal load and a 50π mm sliding distance. In pin-on-disk simulations three different distances between pin and disk axes were considered, i.e., 1.25–2.5–5 times the pin radius (5 mm). For the results, wear volumes, pressure and wear depth maps were compared. Some interesting aspects arose: (i) the rotational effect in pin-on-disk tests causes higher wear volumes (up to 13%) with respect to pin-on-plate tests: the nearer the pin to the disk axis, the higher the wear volume; (ii) a simple quadratic formula is defined to correct the wear volume estimation for pin-on-disk tests; (iii) pressure redistribution occurs with higher values closer to disk axis, opposite to the wear depth trend. Due to the high computational costs, only the running-in phase of wear tests was considered. Numerical strategies are currently under investigation to extend this study to the steady state phase.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对板与针对盘磨损试验:对初始瞬态阶段的理论和数值观察
销对板和销对盘磨损试验通常用于评估特定材料耦合的磨损行为,并使用阿卡德磨损定律估算其磨损系数。本研究调查了针对板和针对盘情况下阿卡德定律的差异,特别是平端销的差异。假设法向载荷为 21 N,滑动距离为 50π mm,对这两种测试建立了分析模型和有限元模型。在销对盘模拟中,考虑了销和盘轴之间的三种不同距离,即销半径(5 毫米)的 1.25-2.5-5 倍。对结果、磨损量、压力和磨损深度图进行了比较。出现了一些有趣的方面:(i) 针对盘测试中的旋转效应导致磨损量比针对板测试高(高达 13%):针越靠近盘轴,磨损量越大;(ii) 定义了一个简单的二次公式来修正针对盘测试的磨损量估算;(iii) 压力再分布发生在靠近盘轴的较高值,与磨损深度趋势相反。由于计算成本较高,只考虑了磨损试验的磨合阶段。目前正在研究将这项研究扩展到稳态阶段的数值策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Lubricants
Lubricants Engineering-Mechanical Engineering
CiteScore
3.60
自引率
25.70%
发文量
293
审稿时长
11 weeks
期刊介绍: This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding
期刊最新文献
Theoretical and Experimental Study of Flexible Structure Tilting Pad Bearings Considering Deformation Comparative Study on the Lubrication of Ti3C2TX MXene and Graphene Oxide Nanofluids for Titanium Alloys Study of Lubrication Performance and Churning Loss under Mixed Lubrication Mode in Gearbox Investigation on the Static Performance of Surface-Throttling Frictionless Pneumatic Cylinder through Finite Element Method Numerical Simulations and Experimental Validation of Squeeze Film Dampers for Aircraft Jet Engines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1