Rural Urban Nutrient Partnership (RUN): Life Cycle Assessment of Multi Nutrient Recovery from Kitchen Waste and Blackwater

IF 4.6 Q2 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Recycling Pub Date : 2024-04-17 DOI:10.3390/recycling9020031
Heinz Stichnothe, Ben Joseph, Volker Preyl, Carsten Meyer
{"title":"Rural Urban Nutrient Partnership (RUN): Life Cycle Assessment of Multi Nutrient Recovery from Kitchen Waste and Blackwater","authors":"Heinz Stichnothe, Ben Joseph, Volker Preyl, Carsten Meyer","doi":"10.3390/recycling9020031","DOIUrl":null,"url":null,"abstract":"Newly developed and innovative RUN technology aims to recover nutrients from urban wastewater (blackwater) and biowaste (kitchen waste). The development of RUN technology has been supported by the life cycle assessment (LCA) in order to identify hotspots and trade-offs. While the performance of the process at a laboratory scale did not show any environmental benefits from P recovery, the LCA results have helped to improve the environmental performance at the following scale-up step. The recovery of P on a technical scale was environmentally beneficial, especially in terms of the global warming potential (GWP). However, there were still some trade-offs, e.g., freshwater and marine eutrophication were slightly higher compared to conventional P fertilizer production. Given that P is considered a critical raw material and that climate change is probably the most pressing environmental issue, RUN technology has the potential to deliver on both domains.","PeriodicalId":36729,"journal":{"name":"Recycling","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recycling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/recycling9020031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Newly developed and innovative RUN technology aims to recover nutrients from urban wastewater (blackwater) and biowaste (kitchen waste). The development of RUN technology has been supported by the life cycle assessment (LCA) in order to identify hotspots and trade-offs. While the performance of the process at a laboratory scale did not show any environmental benefits from P recovery, the LCA results have helped to improve the environmental performance at the following scale-up step. The recovery of P on a technical scale was environmentally beneficial, especially in terms of the global warming potential (GWP). However, there were still some trade-offs, e.g., freshwater and marine eutrophication were slightly higher compared to conventional P fertilizer production. Given that P is considered a critical raw material and that climate change is probably the most pressing environmental issue, RUN technology has the potential to deliver on both domains.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
农村城市养分伙伴关系 (RUN):从厨房垃圾和黑水中回收多种养分的生命周期评估
新开发的创新 RUN 技术旨在从城市污水(黑水)和生物垃圾(厨房垃圾)中回收营养物质。RUN 技术的开发得到了生命周期评估(LCA)的支持,以确定热点和权衡。虽然实验室规模的工艺性能并未显示出回收 P 带来的任何环境效益,但生命周期评估结果有助于改善后续放大步骤的环境性能。在技术规模上回收 P 有利于环境,特别是在全球升温潜能值 (GWP) 方面。不过,仍然存在一些权衡问题,例如,与传统的钾肥生产相比,淡水和海洋富营养化程度略高。鉴于磷被认为是一种重要的原材料,而气候变化可能是最紧迫的环境问题,因此 RUN 技术有可能在这两个领域都取得成效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Recycling
Recycling Environmental Science-Management, Monitoring, Policy and Law
CiteScore
6.80
自引率
7.00%
发文量
84
审稿时长
11 weeks
期刊最新文献
Quality-Driven Allocation Method to Promote the Circular Economy for Plastic Components in the Automotive Industry Silicon Kerf Recovery via Acid Leaching Followed by Melting at Elevated Temperatures An Investigation into Sustainable Solutions: Utilizing Hydrated Lime Derived from Oyster Shells as an Eco-Friendly Alternative for Semiconductor Wastewater Treatment Environmental and Economic Forecast of the Widespread Use of Anaerobic Digestion Techniques Concentration of Silver from Recycling of Fine Powder of Wasted Videogame Printed Circuit Boards through Reverse Froth Flotation and Magnetic Separation Processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1