Maha Ben Ayed, M. Soualhi, Raouf Ketata, N. Mairot, Sylvian Giampiccolo, Noureddine Zerhouni
{"title":"Data-Driven Methodology to Assess Raw Materials Impact on Manufacturing Systems Breakdowns","authors":"Maha Ben Ayed, M. Soualhi, Raouf Ketata, N. Mairot, Sylvian Giampiccolo, Noureddine Zerhouni","doi":"10.36001/ijphm.2024.v15i1.3818","DOIUrl":null,"url":null,"abstract":"Data-driven Prognostics and Health Management (PHM) become a crucial layer in the realm of predictive maintenance (PM). However, many industries develop PM technologies based on the monitoring of machine data to anticipate failures without considering the injected raw material. In reality, non-compliant material characteristics can affect the manufacturing tools leading to machine breakdowns and poor quality product. To cope with this situation, this paper proposes a new methodology that helps operators predicting machine breakdowns. In detail, the methodology starts by implementing an Extract, Transform, Load (ETL) process which aims to create a new and reliable dataset from heterogeneous sources. Then, a feature selection method is used for dimensionality reduction and keep only useful information. After that, the selected features are injected to Machine Learning (ML) algorithms to predict system breakdown occurrences. Finally, the novelty in this study, an auto-labeling algorithm based on material data and machine breakdown predictions is proposed. This algorithm aims to enhance raw material stock management, scheduling their consumption accordingly and thus reducing machine breakdowns. The developed methodology is applied to a real dataset of a French company, SCODER, that shows and pointed out promising perspectives in PM.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/ijphm.2024.v15i1.3818","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Data-driven Prognostics and Health Management (PHM) become a crucial layer in the realm of predictive maintenance (PM). However, many industries develop PM technologies based on the monitoring of machine data to anticipate failures without considering the injected raw material. In reality, non-compliant material characteristics can affect the manufacturing tools leading to machine breakdowns and poor quality product. To cope with this situation, this paper proposes a new methodology that helps operators predicting machine breakdowns. In detail, the methodology starts by implementing an Extract, Transform, Load (ETL) process which aims to create a new and reliable dataset from heterogeneous sources. Then, a feature selection method is used for dimensionality reduction and keep only useful information. After that, the selected features are injected to Machine Learning (ML) algorithms to predict system breakdown occurrences. Finally, the novelty in this study, an auto-labeling algorithm based on material data and machine breakdown predictions is proposed. This algorithm aims to enhance raw material stock management, scheduling their consumption accordingly and thus reducing machine breakdowns. The developed methodology is applied to a real dataset of a French company, SCODER, that shows and pointed out promising perspectives in PM.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.