Interview with Drew Weissman, 2023 Nobel Laureate in Physiology or Medicine

Q1 Medicine Pathogens and Immunity Pub Date : 2024-04-16 DOI:10.20411/pai.v9i1.698
Michael Lederman, Neil Greenspan
{"title":"Interview with Drew Weissman, 2023 Nobel Laureate in Physiology or Medicine","authors":"Michael Lederman, Neil Greenspan","doi":"10.20411/pai.v9i1.698","DOIUrl":null,"url":null,"abstract":"Drew Weissman, MD, PhD, received the 2023 Nobel Prize in Physiology or Medicine together with Katalin Karikó, PhD. Dr. Weissman received his bachelor's and master's degrees from Brandeis University, Waltham, MA, in 1981. He received his MD and PhD in 1987 from Boston University, Boston, MA, and this was followed by a residency at Beth Israel Deaconess Medical Center, Boston, MA. He then completed a fellowship at the National Institute of Allergy and Infectious Diseases under the supervision of Anthony Fauci, MD. He joined the Faculty at the University of Pennsylvania, Philadelphia, in 1997, where, in collaboration with Dr. Katalin Karikó, he explored the use of messenger RNA (mRNA) to drive heterologous gene expression in human cells. They overcame the notorious susceptibility of RNAs to degradation by packaging the mRNA in lipid nanoparticles and learned to both optimize protein expression and attenuate the inflammatory response to the exogenous RNAs by [covalently] modifying bases in the RNA sequence. This work has revolutionized immunization technology and allowed for the production of the most effective vaccines to prevent COVID-19.","PeriodicalId":36419,"journal":{"name":"Pathogens and Immunity","volume":"11 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathogens and Immunity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20411/pai.v9i1.698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Drew Weissman, MD, PhD, received the 2023 Nobel Prize in Physiology or Medicine together with Katalin Karikó, PhD. Dr. Weissman received his bachelor's and master's degrees from Brandeis University, Waltham, MA, in 1981. He received his MD and PhD in 1987 from Boston University, Boston, MA, and this was followed by a residency at Beth Israel Deaconess Medical Center, Boston, MA. He then completed a fellowship at the National Institute of Allergy and Infectious Diseases under the supervision of Anthony Fauci, MD. He joined the Faculty at the University of Pennsylvania, Philadelphia, in 1997, where, in collaboration with Dr. Katalin Karikó, he explored the use of messenger RNA (mRNA) to drive heterologous gene expression in human cells. They overcame the notorious susceptibility of RNAs to degradation by packaging the mRNA in lipid nanoparticles and learned to both optimize protein expression and attenuate the inflammatory response to the exogenous RNAs by [covalently] modifying bases in the RNA sequence. This work has revolutionized immunization technology and allowed for the production of the most effective vaccines to prevent COVID-19.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
专访 2023 年诺贝尔生理学或医学奖得主德鲁-魏斯曼
德鲁-魏斯曼(Drew Weissman)医学博士与卡塔林-卡里科(Katalin Karikó)博士共同获得了 2023 年诺贝尔生理学或医学奖。韦斯曼博士于 1981 年在马萨诸塞州沃尔瑟姆的布兰迪斯大学获得学士和硕士学位。1987 年,他在马萨诸塞州波士顿的波士顿大学获得医学博士和博士学位,随后在马萨诸塞州波士顿的贝斯以色列女执事医疗中心完成住院医师培训。随后,他在安东尼-福奇医学博士的指导下,在美国国家过敏症和传染病研究所完成了研究。1997 年,他加入费城宾夕法尼亚大学,与 Katalin Karikó 博士合作,探索利用信使核糖核酸 (mRNA) 在人体细胞中驱动异源基因表达。他们将 mRNA 包装在脂质纳米颗粒中,从而克服了 RNA 易于降解的缺点,并学会了通过[共价]修饰 RNA 序列中的碱基来优化蛋白质表达和减轻对外源 RNA 的炎症反应。这项工作彻底改变了免疫技术,并生产出了预防 COVID-19 的最有效疫苗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Pathogens and Immunity
Pathogens and Immunity Medicine-Infectious Diseases
CiteScore
10.60
自引率
0.00%
发文量
16
审稿时长
10 weeks
期刊最新文献
Historical Highlight: The Luria-Delbrück Fluctuation Test - A Study of the Nature of Bacterial Mutations Conferring Resistance to Infection by Bacteriophage. Escape of SARS-CoV-2 Variants KP.1.1, LB.1, and KP3.3 From Approved Monoclonal Antibodies. Jonathan Yewdell Discusses Viral Immunology, Vaccine Development, Navigating a Scientific Career, and Offers Perspectives on Transforming Scientific Publishing and Research Education. Effect of Ceftaroline, Ceftazidime/Avibactam, Ceftolozane/Tazobactam, and Meropenem/Vaborbactam on Establishment of Colonization by Vancomycin-Resistant Enterococci and Klebsiella pneumoniae in Mice. People Living With HIV Have More Intact HIV DNA in Circulating CD4+ T Cells if They Have History of Pulmonary Tuberculosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1