{"title":"Establishment of National Diagnostic Reference Levels for Administered Activity in Diagnostic Nuclear Medicine in Thailand.","authors":"Dutsadee Suttho","doi":"10.2967/jnmt.123.266836","DOIUrl":null,"url":null,"abstract":"The diagnostic reference level (DRL) is a patient-exposure optimization tool used to evaluate radiation doses in medical imaging and provide guidance for protection from them. In Thailand, nuclear medicine DRLs have not been established yet. Therefore, this study surveyed dose levels in routine nuclear medicine procedures to provide national DRLs (NDRLs). Methods: NDRLs in Thailand were established by investigating the administered activity of radiopharmaceuticals in nuclear medicine examination studies. The NDRLs were determined on the basis of the 75th percentile (third quartile) of administered activity distribution as recommended by the International Commission on Radiological Protection. As part of a nationwide survey, datasets for the period between June 1, 2018, and August 31, 2019, were collected from 21 Thailand hospitals with nuclear medicine equipment. All hospitals were asked to report the nuclear medicine imaging devices in use, the standard protocol parameters for selected examinations, the injected activities, and the ages and weights of patients. All data were calculated to determine Thailand NDRLs, which were compared with international NDRLs. Results: The data reported by the 21 hospitals consisted of 4,641 examinations with SPECT or SPECT/CT for general nuclear medicine and 409 examinations with PET. The most widely performed examinations for SPECT were bone, thyroid, oncology, and cardiovascular imaging. The NDRLs for SPECT or SPECT/CT agreed well with published NDRLs for Europe, the United States, Japan, Korea, Kuwait, and Australia. In contrast, the NDRLs for 18F-FDG PET in oncology studies were higher than for Japan, Korea, Kuwait, and Australia but lower than for the United States, the United Kingdom, and the European Union. Conclusion: This study presents NDRL results for adults in Thailand as a way to optimize radiation protection in nuclear medicine imaging. Moreover, the reported injected activity levels were comparable to those of other countries.","PeriodicalId":16548,"journal":{"name":"Journal of nuclear medicine technology","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nuclear medicine technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2967/jnmt.123.266836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
The diagnostic reference level (DRL) is a patient-exposure optimization tool used to evaluate radiation doses in medical imaging and provide guidance for protection from them. In Thailand, nuclear medicine DRLs have not been established yet. Therefore, this study surveyed dose levels in routine nuclear medicine procedures to provide national DRLs (NDRLs). Methods: NDRLs in Thailand were established by investigating the administered activity of radiopharmaceuticals in nuclear medicine examination studies. The NDRLs were determined on the basis of the 75th percentile (third quartile) of administered activity distribution as recommended by the International Commission on Radiological Protection. As part of a nationwide survey, datasets for the period between June 1, 2018, and August 31, 2019, were collected from 21 Thailand hospitals with nuclear medicine equipment. All hospitals were asked to report the nuclear medicine imaging devices in use, the standard protocol parameters for selected examinations, the injected activities, and the ages and weights of patients. All data were calculated to determine Thailand NDRLs, which were compared with international NDRLs. Results: The data reported by the 21 hospitals consisted of 4,641 examinations with SPECT or SPECT/CT for general nuclear medicine and 409 examinations with PET. The most widely performed examinations for SPECT were bone, thyroid, oncology, and cardiovascular imaging. The NDRLs for SPECT or SPECT/CT agreed well with published NDRLs for Europe, the United States, Japan, Korea, Kuwait, and Australia. In contrast, the NDRLs for 18F-FDG PET in oncology studies were higher than for Japan, Korea, Kuwait, and Australia but lower than for the United States, the United Kingdom, and the European Union. Conclusion: This study presents NDRL results for adults in Thailand as a way to optimize radiation protection in nuclear medicine imaging. Moreover, the reported injected activity levels were comparable to those of other countries.