F. Ahrari, Morteza Nazifi, Fatemeh Mazhari, K. Ghazvini, Shaho Menbari, R. Fekrazad, Kourosh Babaei, Ahmad Banihashemrad
{"title":"Photoinactivation Effects of Curcumin, Nano-curcumin, and Erythrosine on Planktonic and Biofilm Cultures of Streptococcus mutans.","authors":"F. Ahrari, Morteza Nazifi, Fatemeh Mazhari, K. Ghazvini, Shaho Menbari, R. Fekrazad, Kourosh Babaei, Ahmad Banihashemrad","doi":"10.34172/jlms.2024.07","DOIUrl":null,"url":null,"abstract":"Introduction: This in vitro study was conducted to assess the phototoxic effects of curcumin, nano-curcumin, and erythrosine on the viability of Streptococcus mutans (S. mutans) in suspension and biofilm forms. Methods: Various concentrations of curcumin (1.5 g/L, 3 g/L), nano-curcumin (3 g/L), and erythrosine (100 μM/L, 250 μM/L) were examined for their impact on planktonic and biofilm cultures of S. mutans, either individually or in conjunction with light irradiation (photodynamic therapy or PDT). A blue light-emitting diode (LED) with a central wavelength of 450 nm served as the light source. The results were compared to 0.12% chlorhexidine digluconate (CHX) as the positive control, and a solution containing neither a photosensitizer (PS) nor a light source as the negative control group. The dependent variable was the number of viable microorganisms per experiment (CFU/mL). Results: Antimicrobial PDT caused a significant reduction in the viability of S. mutans in both planktonic and biofilm forms, compared to the negative control group (P<0.05). The highest cell killing was observed in PDT groups with curcumin 3 g/L or erythrosine 250 μmol/L, although the difference with PDT groups using curcumin 1.5 g/L or erythrosine 100 μmol/L was not significant (P>0.05). Antimicrobial treatments were more effective against planktonic S. mutans than the biofilm form. Conclusion: PDT with either curcumin 1.5 g/L or erythrosine 100 μmol/L may be suggested as an alternative to CHX to inactivate the bacteria in dental plaque or deep cavities. Nano-curcumin, at the selected concentration, exhibited lower efficacy in killing S. mutans compared to Curcumin or erythrosine.","PeriodicalId":16224,"journal":{"name":"Journal of lasers in medical sciences","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of lasers in medical sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34172/jlms.2024.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: This in vitro study was conducted to assess the phototoxic effects of curcumin, nano-curcumin, and erythrosine on the viability of Streptococcus mutans (S. mutans) in suspension and biofilm forms. Methods: Various concentrations of curcumin (1.5 g/L, 3 g/L), nano-curcumin (3 g/L), and erythrosine (100 μM/L, 250 μM/L) were examined for their impact on planktonic and biofilm cultures of S. mutans, either individually or in conjunction with light irradiation (photodynamic therapy or PDT). A blue light-emitting diode (LED) with a central wavelength of 450 nm served as the light source. The results were compared to 0.12% chlorhexidine digluconate (CHX) as the positive control, and a solution containing neither a photosensitizer (PS) nor a light source as the negative control group. The dependent variable was the number of viable microorganisms per experiment (CFU/mL). Results: Antimicrobial PDT caused a significant reduction in the viability of S. mutans in both planktonic and biofilm forms, compared to the negative control group (P<0.05). The highest cell killing was observed in PDT groups with curcumin 3 g/L or erythrosine 250 μmol/L, although the difference with PDT groups using curcumin 1.5 g/L or erythrosine 100 μmol/L was not significant (P>0.05). Antimicrobial treatments were more effective against planktonic S. mutans than the biofilm form. Conclusion: PDT with either curcumin 1.5 g/L or erythrosine 100 μmol/L may be suggested as an alternative to CHX to inactivate the bacteria in dental plaque or deep cavities. Nano-curcumin, at the selected concentration, exhibited lower efficacy in killing S. mutans compared to Curcumin or erythrosine.
期刊介绍:
The "Journal of Lasers in Medical Sciences " is a scientific quarterly publication of the Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences. This journal received a scientific and research rank from the national medical publication committee. This Journal accepts original papers, review articles, case reports, brief reports, case series, photo assays, letters to the editor, and commentaries in the field of laser, or light in any fields of medicine such as the following medical specialties: -Dermatology -General and Vascular Surgery -Oncology -Cardiology -Dentistry -Urology -Rehabilitation -Ophthalmology -Otorhinolaryngology -Gynecology & Obstetrics -Internal Medicine -Orthopedics -Neurosurgery -Radiology -Pain Medicine (Algology) -Basic Sciences (Stem cell, Cellular and Molecular application and physic)