An Innovative Runway Landing Path Detection using UAV Implementation of the K-Means Clustering Algorithm

Nagarani Nagarajan, S. Jothiraj
{"title":"An Innovative Runway Landing Path Detection using UAV Implementation of the K-Means Clustering Algorithm","authors":"Nagarani Nagarajan, S. Jothiraj","doi":"10.17485/ijst/v17i15.2495","DOIUrl":null,"url":null,"abstract":"Objective: To provide a novel approach for automatic Unmanned Aerial Vehicle (UAV) runway detection, leveraging remote sensing data and advanced image processing techniques. Methods: The methodology encompasses Gaussian filter-based despeckling and histogram equalization for preprocessing, followed by Independent Component Analysis (ICA) for feature extraction and segmentation using the K-means clustering algorithm. Findings: The research demonstrates successful UAV runway detection, even with unlabeled datasets, underscoring the efficacy of the proposed methods. Notably, the study contributes to automatic target recognition, specifically in Synthetic Aperture Radar (SAR) data analysis, where K-means clustering outperforms Korn B and morphological algorithms. Novelty : The K-means algorithms works by clustering the datasets obtained by integrating all the data collected from various sensors that are placed at specific positions in the runway. This work holds significance in facilitating immediate runway identification during emergencies and finds applications in military operations, surveillance, and remote sensing domains. Keywords: Runway detection, Unmanned Aerial Vehicle, Histogram Equalization, Gaussian filtering, Independent Component Analysis, K-means clustering based segmentation","PeriodicalId":13296,"journal":{"name":"Indian journal of science and technology","volume":"7 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian journal of science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17485/ijst/v17i15.2495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: To provide a novel approach for automatic Unmanned Aerial Vehicle (UAV) runway detection, leveraging remote sensing data and advanced image processing techniques. Methods: The methodology encompasses Gaussian filter-based despeckling and histogram equalization for preprocessing, followed by Independent Component Analysis (ICA) for feature extraction and segmentation using the K-means clustering algorithm. Findings: The research demonstrates successful UAV runway detection, even with unlabeled datasets, underscoring the efficacy of the proposed methods. Notably, the study contributes to automatic target recognition, specifically in Synthetic Aperture Radar (SAR) data analysis, where K-means clustering outperforms Korn B and morphological algorithms. Novelty : The K-means algorithms works by clustering the datasets obtained by integrating all the data collected from various sensors that are placed at specific positions in the runway. This work holds significance in facilitating immediate runway identification during emergencies and finds applications in military operations, surveillance, and remote sensing domains. Keywords: Runway detection, Unmanned Aerial Vehicle, Histogram Equalization, Gaussian filtering, Independent Component Analysis, K-means clustering based segmentation
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 K-Means 聚类算法实施无人机跑道着陆路径检测的创新方法
目的利用遥感数据和先进的图像处理技术,为无人驾驶飞行器(UAV)跑道自动检测提供一种新方法。方法:该方法包括基于高斯滤波器的去斑和直方图均衡化预处理,然后使用独立分量分析(ICA)进行特征提取,并使用 K-means 聚类算法进行分割。研究结果研究表明,即使在无标注数据集的情况下,也能成功进行无人机跑道检测,这凸显了所提方法的功效。值得注意的是,该研究有助于自动目标识别,特别是在合成孔径雷达(SAR)数据分析中,K均值聚类算法优于 Korn B 算法和形态学算法。新颖性:K-means 算法的工作原理是对从放置在跑道特定位置的各种传感器收集到的所有数据集进行聚类。这项工作有助于在紧急情况下立即识别跑道,并可应用于军事行动、监控和遥感领域。关键词跑道检测、无人机、直方图均衡化、高斯滤波、独立分量分析、基于 K-means 聚类的分割
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Difference Ordered G􀀀 Semirings Study of Photogalvanic Effect by using Marigold Flower as Natural Photosensitizer, Xylose as Reductant and Tween 80 as Surfactant for Solar Radiation Conversion and Storage On Micro Pre-Neighborhoods in Micro Topological Spaces Type (K) Compatible Mappings and Common Fixed Points in Complete Cone S-metric Spaces Response Surface Optimization for Compliant Joint of Humanoid Robot Using ANSYS - Design of Experiment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1