Thermoelectric optimization using first principles calculation and single parabolic band model: a case of Ca0.5La0.5-xBixMnO3 (x = 0, 0.25)

IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Modelling and Simulation in Materials Science and Engineering Pub Date : 2024-04-15 DOI:10.1088/1361-651x/ad3e97
Bambang Mulyo Raharjo, Budhy Kurniawan, Bambang Soegijono, D. R. Munazat, Dhawud Sabilur Razaq, E. Suprayoga
{"title":"Thermoelectric optimization using first principles calculation and single parabolic band model: a case of Ca0.5La0.5-xBixMnO3 (x = 0, 0.25)","authors":"Bambang Mulyo Raharjo, Budhy Kurniawan, Bambang Soegijono, D. R. Munazat, Dhawud Sabilur Razaq, E. Suprayoga","doi":"10.1088/1361-651x/ad3e97","DOIUrl":null,"url":null,"abstract":"\n Conducting optimization calculations for thermoelectric performance can be beneficial in guiding the direction of further experimental work. In our study, we utilize a combination of the first principle, Boltzmann transport and restructured single parabolic band model to investigate the half-doped semiconductors based on manganite. Ca0.5La0.5-xBixMnO3 (x = 0, 0.25) as samples shows the power factor (PF) optimum value of 30% and 69% for x = 0 and 0.25, respectively at a temperature of 800 K. In addition, both samples show two to three orders of magnitude smaller lattice thermal conductivity than their electronic thermal conductivity. This excludes complex phononic transport mechanisms from the calculation of the figure of merit (ZT). The ZT calculations of CLMO and CLBMO are corrected by the ratio of the transport relaxation time of electrical conductivity to the transport relaxation time of electronic thermal conductivity by the Lorenz number, resulting in ZT values of 0.063 and 0.327 at a temperature of 800 K, respectively.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-651x/ad3e97","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Conducting optimization calculations for thermoelectric performance can be beneficial in guiding the direction of further experimental work. In our study, we utilize a combination of the first principle, Boltzmann transport and restructured single parabolic band model to investigate the half-doped semiconductors based on manganite. Ca0.5La0.5-xBixMnO3 (x = 0, 0.25) as samples shows the power factor (PF) optimum value of 30% and 69% for x = 0 and 0.25, respectively at a temperature of 800 K. In addition, both samples show two to three orders of magnitude smaller lattice thermal conductivity than their electronic thermal conductivity. This excludes complex phononic transport mechanisms from the calculation of the figure of merit (ZT). The ZT calculations of CLMO and CLBMO are corrected by the ratio of the transport relaxation time of electrical conductivity to the transport relaxation time of electronic thermal conductivity by the Lorenz number, resulting in ZT values of 0.063 and 0.327 at a temperature of 800 K, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用第一原理计算和单抛物面带模型进行热电优化:Ca0.5La0.5-xBixMnO3(x = 0,0.25)的情况
对热电性能进行优化计算有助于为进一步的实验工作指明方向。在我们的研究中,我们结合第一原理、玻尔兹曼输运和重组单抛物面能带模型来研究基于锰矿的半掺杂半导体。以 Ca0.5La0.5-xBixMnO3(x = 0,0.25)为样品,在温度为 800 K 时,x = 0 和 0.25 的功率因数(PF)最佳值分别为 30% 和 69%。这就把复杂的声波传输机制排除在了优点系数(ZT)的计算之外。在计算 CLMO 和 CLBMO 的 ZT 值时,用洛伦兹数对电导率的传输弛豫时间与电子热导率的传输弛豫时间之比进行了修正,得出 800 K 温度下的 ZT 值分别为 0.063 和 0.327。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
96
审稿时长
1.7 months
期刊介绍: Serving the multidisciplinary materials community, the journal aims to publish new research work that advances the understanding and prediction of material behaviour at scales from atomistic to macroscopic through modelling and simulation. Subject coverage: Modelling and/or simulation across materials science that emphasizes fundamental materials issues advancing the understanding and prediction of material behaviour. Interdisciplinary research that tackles challenging and complex materials problems where the governing phenomena may span different scales of materials behaviour, with an emphasis on the development of quantitative approaches to explain and predict experimental observations. Material processing that advances the fundamental materials science and engineering underpinning the connection between processing and properties. Covering all classes of materials, and mechanical, microstructural, electronic, chemical, biological, and optical properties.
期刊最新文献
Plastic deformation mechanism of γ phase Fe–Cr alloy revealed by molecular dynamics simulations A nonlinear phase-field model of corrosion with charging kinetics of electric double layer Effect of helium bubbles on the mobility of edge dislocations in copper Mechanical-electric-magnetic-thermal coupled enriched finite element method for magneto-electro-elastic structures Molecular dynamics simulations of high-energy radiation damage in hcp-titanium considering electronic effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1