Bambang Mulyo Raharjo, Budhy Kurniawan, Bambang Soegijono, D. R. Munazat, Dhawud Sabilur Razaq, E. Suprayoga
{"title":"Thermoelectric optimization using first principles calculation and single parabolic band model: a case of Ca0.5La0.5-xBixMnO3 (x = 0, 0.25)","authors":"Bambang Mulyo Raharjo, Budhy Kurniawan, Bambang Soegijono, D. R. Munazat, Dhawud Sabilur Razaq, E. Suprayoga","doi":"10.1088/1361-651x/ad3e97","DOIUrl":null,"url":null,"abstract":"\n Conducting optimization calculations for thermoelectric performance can be beneficial in guiding the direction of further experimental work. In our study, we utilize a combination of the first principle, Boltzmann transport and restructured single parabolic band model to investigate the half-doped semiconductors based on manganite. Ca0.5La0.5-xBixMnO3 (x = 0, 0.25) as samples shows the power factor (PF) optimum value of 30% and 69% for x = 0 and 0.25, respectively at a temperature of 800 K. In addition, both samples show two to three orders of magnitude smaller lattice thermal conductivity than their electronic thermal conductivity. This excludes complex phononic transport mechanisms from the calculation of the figure of merit (ZT). The ZT calculations of CLMO and CLBMO are corrected by the ratio of the transport relaxation time of electrical conductivity to the transport relaxation time of electronic thermal conductivity by the Lorenz number, resulting in ZT values of 0.063 and 0.327 at a temperature of 800 K, respectively.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-651x/ad3e97","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Conducting optimization calculations for thermoelectric performance can be beneficial in guiding the direction of further experimental work. In our study, we utilize a combination of the first principle, Boltzmann transport and restructured single parabolic band model to investigate the half-doped semiconductors based on manganite. Ca0.5La0.5-xBixMnO3 (x = 0, 0.25) as samples shows the power factor (PF) optimum value of 30% and 69% for x = 0 and 0.25, respectively at a temperature of 800 K. In addition, both samples show two to three orders of magnitude smaller lattice thermal conductivity than their electronic thermal conductivity. This excludes complex phononic transport mechanisms from the calculation of the figure of merit (ZT). The ZT calculations of CLMO and CLBMO are corrected by the ratio of the transport relaxation time of electrical conductivity to the transport relaxation time of electronic thermal conductivity by the Lorenz number, resulting in ZT values of 0.063 and 0.327 at a temperature of 800 K, respectively.
期刊介绍:
Serving the multidisciplinary materials community, the journal aims to publish new research work that advances the understanding and prediction of material behaviour at scales from atomistic to macroscopic through modelling and simulation.
Subject coverage:
Modelling and/or simulation across materials science that emphasizes fundamental materials issues advancing the understanding and prediction of material behaviour. Interdisciplinary research that tackles challenging and complex materials problems where the governing phenomena may span different scales of materials behaviour, with an emphasis on the development of quantitative approaches to explain and predict experimental observations. Material processing that advances the fundamental materials science and engineering underpinning the connection between processing and properties. Covering all classes of materials, and mechanical, microstructural, electronic, chemical, biological, and optical properties.