Thangavel Yuvaraja, Winston Gnanathika Rajan, Salem Jeyaseelan, Rengasamy Ashokkumar, Magudeeswaran Premkumar, PhD W. R. Salem JEYASEELAN, PhD S. R. ASHOKKUMAR
{"title":"Detecting and Mitigating Low-Rate DoS and DDoS Attacks: Multimodal Fusion of Time-Frequency Analysis and Deep Learning model","authors":"Thangavel Yuvaraja, Winston Gnanathika Rajan, Salem Jeyaseelan, Rengasamy Ashokkumar, Magudeeswaran Premkumar, PhD W. R. Salem JEYASEELAN, PhD S. R. ASHOKKUMAR","doi":"10.17559/tv-20230613000728","DOIUrl":null,"url":null,"abstract":": This paper outlines a method for identifying and counteracting distributed denial of service (DDoS) and low-rate denial of service (DoS) attacks. These impair significant threats to network security and can disrupt the accessibility and efficacy of systems under attack. The proposed method combines Time-Frequency Analysis (TFA) using Short-Time Fourier Transform (STFT) and a Deep Learning model (DLM), namely Recurrent Neural Network (RNN), to enhance network security. By leveraging the strengths of STFT and RNN, the approach achieves improved detection capabilities and enables timely response and effective mitigation. The CICDDoS2019 dataset has been employed to conduct the evaluation, which provides a diverse set of realistic attack traffic scenarios. The results show that the proposed approach is effective, with an impressive accuracy rate of 99.1%. Compared to traditional methods, the integrated achieves higher accuracy and lower false positive rates. This research highlights the potential of Multimodal Fusion method, for addressing the growing need for advanced defense mechanisms in today's evolving threat landscape.","PeriodicalId":510054,"journal":{"name":"Tehnicki vjesnik - Technical Gazette","volume":"54 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tehnicki vjesnik - Technical Gazette","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17559/tv-20230613000728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
: This paper outlines a method for identifying and counteracting distributed denial of service (DDoS) and low-rate denial of service (DoS) attacks. These impair significant threats to network security and can disrupt the accessibility and efficacy of systems under attack. The proposed method combines Time-Frequency Analysis (TFA) using Short-Time Fourier Transform (STFT) and a Deep Learning model (DLM), namely Recurrent Neural Network (RNN), to enhance network security. By leveraging the strengths of STFT and RNN, the approach achieves improved detection capabilities and enables timely response and effective mitigation. The CICDDoS2019 dataset has been employed to conduct the evaluation, which provides a diverse set of realistic attack traffic scenarios. The results show that the proposed approach is effective, with an impressive accuracy rate of 99.1%. Compared to traditional methods, the integrated achieves higher accuracy and lower false positive rates. This research highlights the potential of Multimodal Fusion method, for addressing the growing need for advanced defense mechanisms in today's evolving threat landscape.