Congestion Control Mechanism Based on Backpressure Feedback in Data Center Networks

IF 2.8 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Future Internet Pub Date : 2024-04-15 DOI:10.3390/fi16040131
Wei Li, Mengzhen Ren, Yazhi Liu, Chenyu Li, Hui Qian, Zhenyou Zhang
{"title":"Congestion Control Mechanism Based on Backpressure Feedback in Data Center Networks","authors":"Wei Li, Mengzhen Ren, Yazhi Liu, Chenyu Li, Hui Qian, Zhenyou Zhang","doi":"10.3390/fi16040131","DOIUrl":null,"url":null,"abstract":"In order to solve the congestion problem caused by the dramatic growth of traffic in data centers, many end-to-end congestion controls have been proposed to respond to congestion in one round-trip time (RTT). In this paper, we propose a new congestion control mechanism based on backpressure feedback (BFCC), which is designed with the primary goal of switch-to-switch congestion control to resolve congestion in a one-hop RTT. This approach utilizes a programmable data plane to continuously monitor network congestion in real time and identify real-congested flows. In addition, it employs targeted flow control through backpressure feedback. We validate the feasibility of this mechanism on BMV2, a programmable virtual switch based on programming protocol-independent packet processors (P4). Simulation results demonstrate that BFCC greatly enhances flow completion times (FCTs) compared to other end-to-end congestion control mechanisms. It achieves 1.2–2× faster average completion times than other mechanisms.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi16040131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In order to solve the congestion problem caused by the dramatic growth of traffic in data centers, many end-to-end congestion controls have been proposed to respond to congestion in one round-trip time (RTT). In this paper, we propose a new congestion control mechanism based on backpressure feedback (BFCC), which is designed with the primary goal of switch-to-switch congestion control to resolve congestion in a one-hop RTT. This approach utilizes a programmable data plane to continuously monitor network congestion in real time and identify real-congested flows. In addition, it employs targeted flow control through backpressure feedback. We validate the feasibility of this mechanism on BMV2, a programmable virtual switch based on programming protocol-independent packet processors (P4). Simulation results demonstrate that BFCC greatly enhances flow completion times (FCTs) compared to other end-to-end congestion control mechanisms. It achieves 1.2–2× faster average completion times than other mechanisms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据中心网络中基于反压反馈的拥塞控制机制
为了解决数据中心流量急剧增长所带来的拥塞问题,人们提出了许多端到端拥塞控制措施,以应对一个往返时间(RTT)内的拥塞。在本文中,我们提出了一种基于反压反馈(BFCC)的新拥塞控制机制,其设计的主要目标是交换机到交换机拥塞控制,以解决单跳 RTT 内的拥塞问题。这种方法利用可编程数据平面持续实时监控网络拥塞情况,并识别真正的拥塞流量。此外,它还通过反压反馈进行有针对性的流量控制。我们在 BMV2 上验证了这一机制的可行性,BMV2 是基于独立于协议的数据包处理器(P4)编程的可编程虚拟交换机。仿真结果表明,与其他端到端拥塞控制机制相比,BFCC 大大提高了流量完成时间(FCT)。它的平均完成时间比其他机制快 1.2-2 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Future Internet
Future Internet Computer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍: Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.
期刊最新文献
Testing Stimulus Equivalence in Transformer-Based Agents Dynamic Fashion Video Synthesis from Static Imagery A Survey on Emerging Blockchain Technology Platforms for Securing the Internet of Things Cross-Domain Fake News Detection Using a Prompt-Based Approach Energy Efficiency and Load Optimization in Heterogeneous Networks through Dynamic Sleep Strategies: A Constraint-Based Optimization Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1