Branimir Jambreković, Filip Veselčić, I. Ištok, T. Sinković, Vjekoslav Živković, T. Sedlar
{"title":"A Comparative Analysis of Oak Wood Defect Detection Using Two Deep Learning (DL)-Based Software","authors":"Branimir Jambreković, Filip Veselčić, I. Ištok, T. Sinković, Vjekoslav Živković, T. Sedlar","doi":"10.3390/asi7020030","DOIUrl":null,"url":null,"abstract":"The world’s expanding population presents a challenge through its rising demand for wood products. This requirement contributes to increased production and, ultimately, the high-quality and efficient utilization of basic materials. Detecting defects in wood elements, which are inevitable when working with a natural material such as wood, is one of the difficulties associated with the issue above. Even in modern times, people still identify wood defects by visually scrutinizing the sawn surface and marking the defects. Industrial scanners equipped with software based on convolutional neural networks (CNNs) allow for the rapid detection of defects and have the potential to accelerate production and eradicate human subjectivity. This paper evaluates the suitability of defect recognition software in industrial scanners against software specifically designed for this task within a research project conducted using Adaptive Vision Studio, focusing on feature detection techniques. The research revealed that the software installed as part of the industrial scanner is more effective for analyzing knots (77.78% vs. 70.37%), sapwood (100% vs. 80%), and ambrosia wood (60% vs. 20%), while the software derived from the project is more effective for analyzing cracks (70% vs. 65%), ingrown bark (42.86% vs. 28.57%), and wood rays (81.82% vs. 27.27%).","PeriodicalId":36273,"journal":{"name":"Applied System Innovation","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied System Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/asi7020030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The world’s expanding population presents a challenge through its rising demand for wood products. This requirement contributes to increased production and, ultimately, the high-quality and efficient utilization of basic materials. Detecting defects in wood elements, which are inevitable when working with a natural material such as wood, is one of the difficulties associated with the issue above. Even in modern times, people still identify wood defects by visually scrutinizing the sawn surface and marking the defects. Industrial scanners equipped with software based on convolutional neural networks (CNNs) allow for the rapid detection of defects and have the potential to accelerate production and eradicate human subjectivity. This paper evaluates the suitability of defect recognition software in industrial scanners against software specifically designed for this task within a research project conducted using Adaptive Vision Studio, focusing on feature detection techniques. The research revealed that the software installed as part of the industrial scanner is more effective for analyzing knots (77.78% vs. 70.37%), sapwood (100% vs. 80%), and ambrosia wood (60% vs. 20%), while the software derived from the project is more effective for analyzing cracks (70% vs. 65%), ingrown bark (42.86% vs. 28.57%), and wood rays (81.82% vs. 27.27%).