The Potential of Additive Manufacturing of Metal Components to Reduce Environmental Impacts

Q2 Engineering Journal of Machine Engineering Pub Date : 2024-04-15 DOI:10.36897/jme/186988
Antoine Balidas, O. Kerbrat, J. Hascoet
{"title":"The Potential of Additive Manufacturing of Metal Components to Reduce Environmental Impacts","authors":"Antoine Balidas, O. Kerbrat, J. Hascoet","doi":"10.36897/jme/186988","DOIUrl":null,"url":null,"abstract":"Additive manufacturing (AM) is used in metal part forming for its innovative character but its potential for sustainability is uncertain. The energy and material consumption required for manufacturing are significant. Thus, the research question of this article is: “What are the current uses of AM that present a real potential for reducing environmental impact?”. The WAAM (Wire Arc Additive Manufacturing) process appears to be the most energy-efficient in comparison to other AM processes. A process parameters study shows that deposition rate has a substantial impact on energy consumption. This parameter represents the amount of material deposited in a unit of time and is directly linked to productivity. It appears that an increase of the deposition rate leads to a reduction in energy consumption. Experiments on WAAM with a high deposition rate permits to create a database of energy and material consumption. This database is then used to identify cases of parts made with WAAM that offer a significant impact reduction compared with conventional manufacturing processes.","PeriodicalId":37821,"journal":{"name":"Journal of Machine Engineering","volume":"88 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machine Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36897/jme/186988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Additive manufacturing (AM) is used in metal part forming for its innovative character but its potential for sustainability is uncertain. The energy and material consumption required for manufacturing are significant. Thus, the research question of this article is: “What are the current uses of AM that present a real potential for reducing environmental impact?”. The WAAM (Wire Arc Additive Manufacturing) process appears to be the most energy-efficient in comparison to other AM processes. A process parameters study shows that deposition rate has a substantial impact on energy consumption. This parameter represents the amount of material deposited in a unit of time and is directly linked to productivity. It appears that an increase of the deposition rate leads to a reduction in energy consumption. Experiments on WAAM with a high deposition rate permits to create a database of energy and material consumption. This database is then used to identify cases of parts made with WAAM that offer a significant impact reduction compared with conventional manufacturing processes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金属部件增材制造在减少环境影响方面的潜力
快速成型制造(AM)因其创新性而被用于金属零件成型,但其可持续发展的潜力尚不确定。制造过程中需要消耗大量能源和材料。因此,本文的研究问题是"目前有哪些 AM 用途具有减少环境影响的真正潜力?与其他 AM 工艺相比,WAAM(线弧快速成型)工艺似乎是最节能的。工艺参数研究表明,沉积率对能耗有很大影响。该参数表示单位时间内沉积的材料量,与生产率直接相关。提高沉积率似乎可以降低能耗。通过在高沉积率的 WAAM 上进行实验,可以建立一个能源和材料消耗数据库。然后,利用该数据库确定采用 WAAM 制造的零件的情况,与传统制造工艺相比,WAAM 可显著减少影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Machine Engineering
Journal of Machine Engineering Engineering-Industrial and Manufacturing Engineering
CiteScore
2.70
自引率
0.00%
发文量
36
审稿时长
25 weeks
期刊介绍: ournal of Machine Engineering is a scientific journal devoted to current issues of design and manufacturing - aided by innovative computer techniques and state-of-the-art computer systems - of products which meet the demands of the current global market. It favours solutions harmonizing with the up-to-date manufacturing strategies, the quality requirements and the needs of design, planning, scheduling and production process management. The Journal'' s subject matter also covers the design and operation of high efficient, precision, process machines. The Journal is a continuator of Machine Engineering Publisher for five years. The Journal appears quarterly, with a circulation of 100 copies, with each issue devoted entirely to a different topic. The papers are carefully selected and reviewed by distinguished world famous scientists and practitioners. The authors of the publications are eminent specialists from all over the world and Poland. Journal of Machine Engineering provides the best assistance to factories and universities. It enables factories to solve their difficult problems and manufacture good products at a low cost and fast rate. It enables educators to update their teaching and scientists to deepen their knowledge and pursue their research in the right direction.
期刊最新文献
Fracture Mechanics-Based Modelling of Tool Wear in Machining Ti6Al4V Considering the Microstructure of Cemented Carbide Tools Fuzzy Logic in Risk Assessment of Production Machines Failure in Forming and Assembly Processes Influence of the Substrate Size on the Cooling Behavior and Properties of the DED-LB Process Automatic Detection of Axes for Turning Parts Enabling Federated Learning Services Using OPC UA, Linked Data and GAIA-X in Cognitive Production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1