Enhanced Secure Storage of Big Data at Rest with Improved ECC and Paillier Homomorphic Encryption Algorithms

HU Rong, Ping Huang
{"title":"Enhanced Secure Storage of Big Data at Rest with Improved ECC and Paillier Homomorphic Encryption Algorithms","authors":"HU Rong, Ping Huang","doi":"10.17559/tv-20230618000745","DOIUrl":null,"url":null,"abstract":": With the rapid growth of Big Data, securing its storage has become crucial. This study proposes to enhance the secure storage of big data at rest in Hadoop by improving encryption algorithms. The Elliptic Curve Cryptography Algorithm (ECC) is upgraded by a parallel two-threaded approach for unstructured data. For structured data, enhance Paillier Homomorphic Encryption to support operations on ciphertexts. Experiments on datasets up to 4 G show that the modified ECC method reduces encryption time to 60 - 80 seconds, compared to 100 - 160 seconds for standard ECC, AES, and DES. It can also use shorter key lengths than RSA with comparable levels of security. Enhanced Paillier encryption uses large prime numbers to ensure the validity of the ciphertext. By combining these improved encryption techniques within a secure Hadoop framework, this research demonstrates an effective way to address vulnerabilities in Big Data storage.","PeriodicalId":510054,"journal":{"name":"Tehnicki vjesnik - Technical Gazette","volume":"290 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tehnicki vjesnik - Technical Gazette","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17559/tv-20230618000745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

: With the rapid growth of Big Data, securing its storage has become crucial. This study proposes to enhance the secure storage of big data at rest in Hadoop by improving encryption algorithms. The Elliptic Curve Cryptography Algorithm (ECC) is upgraded by a parallel two-threaded approach for unstructured data. For structured data, enhance Paillier Homomorphic Encryption to support operations on ciphertexts. Experiments on datasets up to 4 G show that the modified ECC method reduces encryption time to 60 - 80 seconds, compared to 100 - 160 seconds for standard ECC, AES, and DES. It can also use shorter key lengths than RSA with comparable levels of security. Enhanced Paillier encryption uses large prime numbers to ensure the validity of the ciphertext. By combining these improved encryption techniques within a secure Hadoop framework, this research demonstrates an effective way to address vulnerabilities in Big Data storage.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用改进的 ECC 和 Paillier 同态加密算法加强大数据静态安全存储
:随着大数据的快速增长,确保其存储安全已变得至关重要。本研究建议通过改进加密算法来加强 Hadoop 中静态大数据的安全存储。针对非结构化数据,采用并行双线程方法升级椭圆曲线加密算法(ECC)。对于结构化数据,增强了 Paillier 同态加密,以支持对密码文本的操作。对高达 4 G 的数据集进行的实验表明,与标准 ECC、AES 和 DES 的 100 - 160 秒相比,改进后的 ECC 方法将加密时间缩短到 60 - 80 秒。它还可以使用比 RSA 更短的密钥长度,但安全级别相当。增强型 Paillier 加密使用大质数来确保密文的有效性。通过将这些改进的加密技术与安全的 Hadoop 框架相结合,本研究展示了解决大数据存储漏洞的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Annotation Method of Gangue Data Based on Digital Image Processing Determination of FreeCarbon Dioxide Emissions in Mineral Fertilizers Production Novel Geodetic Fuzzy Subgraph-Based Ranking for Congestion Control in RPL-IoT Network Study and Optimization of Ethanol (LRF) Juliflora Biodiesel (HRF) Fuelled RCCI Engine with and without EGR System Research on Damage Detection of Civil Structures Based on Machine Learning of Multiple Vegetation Index Time Series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1