Algorithm xxx: Faster Randomized SVD with Dynamic Shifts

IF 4.7 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-04-14 DOI:10.1145/3660629
Xu Feng, Wenjian Yu, Yuyang Xie, Jie Tang
{"title":"Algorithm xxx: Faster Randomized SVD with Dynamic Shifts","authors":"Xu Feng, Wenjian Yu, Yuyang Xie, Jie Tang","doi":"10.1145/3660629","DOIUrl":null,"url":null,"abstract":"\n Aiming to provide a faster and convenient truncated SVD algorithm for large sparse matrices from real applications (i.e. for computing a few of largest singular values and the corresponding singular vectors), a dynamically shifted power iteration technique is applied to improve the accuracy of the randomized SVD method. This results in a\n d\n yn\n a\n mic\n sh\n ifts based randomized\n SVD\n (dashSVD) algorithm, which also collaborates with the skills for handling sparse matrices. An accuracy-control mechanism is included in the dashSVD algorithm to approximately monitor the per vector error bound of computed singular vectors with negligible overhead. Experiments on real-world data validate that the dashSVD algorithm largely improves the accuracy of randomized SVD algorithm or attains same accuracy with fewer passes over the matrix, and provides an efficient accuracy-control mechanism to the randomized SVD computation, while demonstrating the advantages on runtime and parallel efficiency. A bound of the approximation error of the randomized SVD with the shifted power iteration is also proved.\n","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"169 6","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3660629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Aiming to provide a faster and convenient truncated SVD algorithm for large sparse matrices from real applications (i.e. for computing a few of largest singular values and the corresponding singular vectors), a dynamically shifted power iteration technique is applied to improve the accuracy of the randomized SVD method. This results in a d yn a mic sh ifts based randomized SVD (dashSVD) algorithm, which also collaborates with the skills for handling sparse matrices. An accuracy-control mechanism is included in the dashSVD algorithm to approximately monitor the per vector error bound of computed singular vectors with negligible overhead. Experiments on real-world data validate that the dashSVD algorithm largely improves the accuracy of randomized SVD algorithm or attains same accuracy with fewer passes over the matrix, and provides an efficient accuracy-control mechanism to the randomized SVD computation, while demonstrating the advantages on runtime and parallel efficiency. A bound of the approximation error of the randomized SVD with the shifted power iteration is also proved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
算法 xxx:带有动态位移的更快随机 SVD
为了给实际应用中的大型稀疏矩阵(即计算几个最大奇异值和相应的奇异矢量)提供一种更快、更方便的截断 SVD 算法,我们采用了一种动态位移幂迭代技术来提高随机 SVD 方法的精度。这就产生了一种基于微小变化的随机 SVD(dashSVD)算法,该算法还与处理稀疏矩阵的技能相结合。dashSVD 算法中包含了一种精度控制机制,可近似监测计算奇异向量的单位向量误差边界,而开销则可忽略不计。实际数据实验证明,dashSVD 算法在很大程度上提高了随机 SVD 算法的精度,或以更少的矩阵遍数达到相同的精度,并为随机 SVD 计算提供了高效的精度控制机制,同时展示了运行时间和并行效率方面的优势。此外,还证明了采用移幂迭代的随机 SVD 的近似误差约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
期刊最新文献
A DNA Aptamer as a Chemical Tool to Modulate MEX3C-Mediated mRNA Destabilization. Digitally Customized 3D PCL/β-TCP Scaffold for Precise Reconstruction of Alveolar Crest Defects. Sensitive On-Site Detection of Antibiotic Resistance Genes in Aquatic Products by aPCR-LFA Leveraging AuNPs for Amplification Specificity and Hybrid Probes for Structural Control. A Biodegradable, Self-Gelling Protease-Grafted Alginate Dressing for Efficient Control of Non-Compressible Hemorrhage. Biomimetic Metal-Organic Framework Decorated by Artificial Bacterium-Binding Protein and Apamin for Treatment of Acute Enteritis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1