Integration of omics technologies for the identification of predictive biomarkers in type 2 diabetes: a comprehensive analysis of recent literature

Jefferson Vicente Urvina Muñoz, Erika Alejandra Zúñiga San Lucas, Ney Asdrubal Macias Valdez, Jean Pierre Villafuerte, Cristhian Andrés Arroba Riofrio
{"title":"Integration of omics technologies for the identification of predictive biomarkers in type 2 diabetes: a comprehensive analysis of recent literature","authors":"Jefferson Vicente Urvina Muñoz, Erika Alejandra Zúñiga San Lucas, Ney Asdrubal Macias Valdez, Jean Pierre Villafuerte, Cristhian Andrés Arroba Riofrio","doi":"10.51798/sijis.v5i2.754","DOIUrl":null,"url":null,"abstract":"Background. Omics technologies, such as genomics, proteomics, metabolomics, and Transcriptomics are being used for identifying biomarkers. These biomarkers are unraveling the molecular mechanisms underlying type 2 diabetes mellitus (T2DM), which can help to promote more personalized treatment strategies and advance our understanding of disease pathogenesis. Omics approaches enable the examination of genetic, protein, metabolic, and gene expression profiles more comprehensively while offering insights into T2DM risk, progression, and potential therapeutic targets. Methods: This review follows a systematic methodology, aimed at evaluating omics technology’s role in diabetes research. Utilizing literature searches, we got an initial pool of 257 studies with a rigorous selection process and narrowed the selection to 10 high-quality studies. Our methodology approach ensured the inclusion of relevant, peer-reviewed articles that contribute significantly to understanding the application of omics technologies in predicting biomarkers for type 2 diabetes. Results: The systematic review identifies ten high-quality studies illuminating substantial omics technology’s role in advancing our understanding of type 2 diabetes (T2D). Collectively, these studies demonstrate how genomics, proteomics, metagenomics, metabolomics, and Transcriptomics have uncovered novel biomarkers and molecular pathways for T2D. Our findings underscore all the omics potentials specifically for developing predictive biomarkers, enhancing diagnostics, and tailoring personalized treatment strategies. Genetic variations, metabolic alterations, and protein and RNA expression profiles were highlighted as key areas where omics technologies offer insights into the pathophysiology and management of T2D.","PeriodicalId":247613,"journal":{"name":"Sapienza: International Journal of Interdisciplinary Studies","volume":"56 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sapienza: International Journal of Interdisciplinary Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51798/sijis.v5i2.754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background. Omics technologies, such as genomics, proteomics, metabolomics, and Transcriptomics are being used for identifying biomarkers. These biomarkers are unraveling the molecular mechanisms underlying type 2 diabetes mellitus (T2DM), which can help to promote more personalized treatment strategies and advance our understanding of disease pathogenesis. Omics approaches enable the examination of genetic, protein, metabolic, and gene expression profiles more comprehensively while offering insights into T2DM risk, progression, and potential therapeutic targets. Methods: This review follows a systematic methodology, aimed at evaluating omics technology’s role in diabetes research. Utilizing literature searches, we got an initial pool of 257 studies with a rigorous selection process and narrowed the selection to 10 high-quality studies. Our methodology approach ensured the inclusion of relevant, peer-reviewed articles that contribute significantly to understanding the application of omics technologies in predicting biomarkers for type 2 diabetes. Results: The systematic review identifies ten high-quality studies illuminating substantial omics technology’s role in advancing our understanding of type 2 diabetes (T2D). Collectively, these studies demonstrate how genomics, proteomics, metagenomics, metabolomics, and Transcriptomics have uncovered novel biomarkers and molecular pathways for T2D. Our findings underscore all the omics potentials specifically for developing predictive biomarkers, enhancing diagnostics, and tailoring personalized treatment strategies. Genetic variations, metabolic alterations, and protein and RNA expression profiles were highlighted as key areas where omics technologies offer insights into the pathophysiology and management of T2D.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
整合 omics 技术以确定 2 型糖尿病的预测性生物标记物:近期文献综合分析
背景。基因组学、蛋白质组学、代谢组学和转录组学等 Omics 技术正被用于确定生物标志物。这些生物标志物正在揭示 2 型糖尿病(T2DM)的分子机制,有助于促进更加个性化的治疗策略,并增进我们对疾病发病机制的了解。Omics 方法能够更全面地检查遗传、蛋白质、代谢和基因表达谱,同时提供有关 T2DM 风险、进展和潜在治疗靶点的见解。方法:本综述采用系统方法,旨在评估 omics 技术在糖尿病研究中的作用。通过文献检索,我们初步筛选出 257 项研究,并将范围缩小到 10 项高质量研究。我们的方法确保了纳入相关的、经同行评审的文章,这些文章对了解全息技术在预测 2 型糖尿病生物标志物中的应用有重大贡献。结果:本系统综述确定了十项高质量的研究,这些研究阐明了omics技术在促进我们对2型糖尿病(T2D)的了解方面所起的重要作用。这些研究共同展示了基因组学、蛋白质组学、元基因组学、代谢组学和转录组学是如何发现新型生物标记物和 T2D 分子通路的。我们的研究结果凸显了全方位组学在开发预测性生物标志物、提高诊断水平和定制个性化治疗策略方面的潜力。基因变异、新陈代谢改变以及蛋白质和 RNA 表达谱被强调为全息技术为 T2D 的病理生理学和管理提供见解的关键领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integrating music, drama and visual arts in extracurricular programs: enhancing psychological development in early school-aged children Anthropometric evaluation and emotional alterations in adolescents Applying Hamilton’s vector formula in mathematics education: enhancing student mathematical skills through innovative teaching methods Greener pasture in the government sector? A factor structure on public service motivation among government employees in the Philippines Influence of menstrual symptoms in work activities in teachers and administrators of the Technical University of Ambato
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1