Yutao Liu, Yuquan Wu, Gang Li, Aqeel Abbas, Taikun Shi
{"title":"Submarine cable detection using an end-to-end neural network-based magnetic data inversion","authors":"Yutao Liu, Yuquan Wu, Gang Li, Aqeel Abbas, Taikun Shi","doi":"10.1093/jge/gxae045","DOIUrl":null,"url":null,"abstract":"\n To process magnetic anomaly data, appropriate parameters for field separation, denoising, and Euler deconvolution have to be manually selected. The traditional workflow is inefficient and cannot fulfill the rapid detection of submarine cables due to the complex processing and manual parameter tuning. This study presents an end-to-end deep learning approach for the identification and positioning of submarine cables based on magnetic anomalies. The proposed approach effectively establishes a direct mapping correlation between the magnetic field data and the position of the submarine cable. Synthetic tests suggest that our method has a better performance in terms of positioning accuracy than the conventional Euler method. Our results for the field data are comparable to those obtained using conventional techniques. Furthermore, the proposed method achieves an optimal solution by employing clustering technique and selecting the solution with the maximum confidence, which avoids spurious solutions associated with traditional methods. The proposed method can directly determine the position of the submarine cables using the raw magnetic field data. Contrary to the traditional processing workflow, field separation and denoising are not necessary in this novel approach, resulting in higher processing efficiency and a simpler processing process.","PeriodicalId":54820,"journal":{"name":"Journal of Geophysics and Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysics and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/jge/gxae045","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
To process magnetic anomaly data, appropriate parameters for field separation, denoising, and Euler deconvolution have to be manually selected. The traditional workflow is inefficient and cannot fulfill the rapid detection of submarine cables due to the complex processing and manual parameter tuning. This study presents an end-to-end deep learning approach for the identification and positioning of submarine cables based on magnetic anomalies. The proposed approach effectively establishes a direct mapping correlation between the magnetic field data and the position of the submarine cable. Synthetic tests suggest that our method has a better performance in terms of positioning accuracy than the conventional Euler method. Our results for the field data are comparable to those obtained using conventional techniques. Furthermore, the proposed method achieves an optimal solution by employing clustering technique and selecting the solution with the maximum confidence, which avoids spurious solutions associated with traditional methods. The proposed method can directly determine the position of the submarine cables using the raw magnetic field data. Contrary to the traditional processing workflow, field separation and denoising are not necessary in this novel approach, resulting in higher processing efficiency and a simpler processing process.
期刊介绍:
Journal of Geophysics and Engineering aims to promote research and developments in geophysics and related areas of engineering. It has a predominantly applied science and engineering focus, but solicits and accepts high-quality contributions in all earth-physics disciplines, including geodynamics, natural and controlled-source seismology, oil, gas and mineral exploration, petrophysics and reservoir geophysics. The journal covers those aspects of engineering that are closely related to geophysics, or on the targets and problems that geophysics addresses. Typically, this is engineering focused on the subsurface, particularly petroleum engineering, rock mechanics, geophysical software engineering, drilling technology, remote sensing, instrumentation and sensor design.