{"title":"Detection and High-Throughput Microbial Analysis of Particulate Matter in Houses and Downwind Areas of Duck Farms","authors":"Zhengxiu Qu, Hairong Wang, Ning Li, Zhiyun Guo, Jing Li, Xiaoyang Lv, Yinling Cui, Tongjie Chai","doi":"10.1155/2024/7774679","DOIUrl":null,"url":null,"abstract":"<p>Particulate matter (PM) and the microorganisms of duck houses may have negative impacts on animal and human health. During 2021-2022, PM2.5 and PM10 inside and outside the duck house were sampled with a built-in air sampler in Tai’an City, Shandong Province, and the diversity and abundance of microorganisms within the PM were analyzed by macrogenomic and absolute sequence analysis. The results showed that PM2.5 and PM10 concentrations in the house and at downwind points exceeded the short-term (24 h) guideline of the global air quality guidelines (AQG). Macrogenome sequencing showed that the microbial composition of the PM2.5 samples was dominated by bacteria (exceed 85%); a total of 1316 bacterial genera and 110 fungal genera were identified in PM2.5 samples from duck house 1 in winter, which were much higher than the results of amplicon sequencing method reported before, and relatively high levels of the pathogenic bacteria (Coccidioides immitis, etc.) and the conditionally pathogenic bacterium (Rothia nasimurium) were identified at the species level. Absolute quantitative sequencing detected conditionally pathogenic bacteria and allergens at high levels in PM10 samples: Corynebacterium (5.6 × 10<sup>7</sup> copies/g), Aerococcus (9.9 × 10<sup>6</sup> copies/g), Alternaria (3.3 × 10<sup>6</sup> copies/g), and Aspergillus (8.3 × 10<sup>5</sup> copies/g). Moreover, Corynebacterium was the highest content of PM10 in summer and PM2.5 samples in winter, and its pathogenicity and potential threat should be noted. The diversity and relative abundance of microorganisms were similar in the duck house and at the downwind point. The results showed that the microorganisms in the house environment have a greater influence on the air environment around the downwind point and may pose a public health risk to the staff and the surrounding area.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor air","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/7774679","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Particulate matter (PM) and the microorganisms of duck houses may have negative impacts on animal and human health. During 2021-2022, PM2.5 and PM10 inside and outside the duck house were sampled with a built-in air sampler in Tai’an City, Shandong Province, and the diversity and abundance of microorganisms within the PM were analyzed by macrogenomic and absolute sequence analysis. The results showed that PM2.5 and PM10 concentrations in the house and at downwind points exceeded the short-term (24 h) guideline of the global air quality guidelines (AQG). Macrogenome sequencing showed that the microbial composition of the PM2.5 samples was dominated by bacteria (exceed 85%); a total of 1316 bacterial genera and 110 fungal genera were identified in PM2.5 samples from duck house 1 in winter, which were much higher than the results of amplicon sequencing method reported before, and relatively high levels of the pathogenic bacteria (Coccidioides immitis, etc.) and the conditionally pathogenic bacterium (Rothia nasimurium) were identified at the species level. Absolute quantitative sequencing detected conditionally pathogenic bacteria and allergens at high levels in PM10 samples: Corynebacterium (5.6 × 107 copies/g), Aerococcus (9.9 × 106 copies/g), Alternaria (3.3 × 106 copies/g), and Aspergillus (8.3 × 105 copies/g). Moreover, Corynebacterium was the highest content of PM10 in summer and PM2.5 samples in winter, and its pathogenicity and potential threat should be noted. The diversity and relative abundance of microorganisms were similar in the duck house and at the downwind point. The results showed that the microorganisms in the house environment have a greater influence on the air environment around the downwind point and may pose a public health risk to the staff and the surrounding area.
期刊介绍:
The quality of the environment within buildings is a topic of major importance for public health.
Indoor Air provides a location for reporting original research results in the broad area defined by the indoor environment of non-industrial buildings. An international journal with multidisciplinary content, Indoor Air publishes papers reflecting the broad categories of interest in this field: health effects; thermal comfort; monitoring and modelling; source characterization; ventilation and other environmental control techniques.
The research results present the basic information to allow designers, building owners, and operators to provide a healthy and comfortable environment for building occupants, as well as giving medical practitioners information on how to deal with illnesses related to the indoor environment.