Quanjian Li, Dhruval K. Joshi, Y. Sanghvi, Hongbin Yan
{"title":"Difluoroacetic acid: an alternative acid in the detritylation reaction for the solid-phase synthesis of oligonucleotides.","authors":"Quanjian Li, Dhruval K. Joshi, Y. Sanghvi, Hongbin Yan","doi":"10.1080/15257770.2024.2337145","DOIUrl":null,"url":null,"abstract":"Dichloroacetic acid or trichloroacetic acid are commonly used in the detritylation reaction of the automated solid-phase synthesis of oligonucleotides. Dichloroacetic acid, however, is often contaminated with trichloroacetaldehyde (chloral), leading to the formation of inseparable impurities in the final oligonucleotide product. In this work, three different sequences, namely T18, d(TAA)6, and an 18-mer mixed sequence, were used as models to compare the deprotection efficiency of three acids: trichloroacetic acid, dichloroacetic acid, and difluoroacetic acid. Comparable purities of full-length products were obtained for the synthesis of the three model sequences when dichloroacetic acid or difluoroacetic acid were used during the detritylation reaction, however, conditions need to be optimized for the synthesis of purine-rich sequences. Therefore, difluoroacetic acid is a potential alternative to dichloroacetic acid in the solid-phase synthesis of oligonucleotides to avoid the impurity formation due to presence of chloral.","PeriodicalId":19343,"journal":{"name":"Nucleosides, Nucleotides & Nucleic Acids","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleosides, Nucleotides & Nucleic Acids","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15257770.2024.2337145","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Dichloroacetic acid or trichloroacetic acid are commonly used in the detritylation reaction of the automated solid-phase synthesis of oligonucleotides. Dichloroacetic acid, however, is often contaminated with trichloroacetaldehyde (chloral), leading to the formation of inseparable impurities in the final oligonucleotide product. In this work, three different sequences, namely T18, d(TAA)6, and an 18-mer mixed sequence, were used as models to compare the deprotection efficiency of three acids: trichloroacetic acid, dichloroacetic acid, and difluoroacetic acid. Comparable purities of full-length products were obtained for the synthesis of the three model sequences when dichloroacetic acid or difluoroacetic acid were used during the detritylation reaction, however, conditions need to be optimized for the synthesis of purine-rich sequences. Therefore, difluoroacetic acid is a potential alternative to dichloroacetic acid in the solid-phase synthesis of oligonucleotides to avoid the impurity formation due to presence of chloral.
期刊介绍:
Nucleosides, Nucleotides & Nucleic Acids publishes research articles, short notices, and concise, critical reviews of related topics that focus on the chemistry and biology of nucleosides, nucleotides, and nucleic acids.
Complete with experimental details, this all-inclusive journal emphasizes the synthesis, biological activities, new and improved synthetic methods, and significant observations related to new compounds.