Radiation absorption effect on MHD natural convective flow past an impulsively started infinite vertical plate with chemical reaction and thermal radiation
{"title":"Radiation absorption effect on MHD natural convective flow past an impulsively started infinite vertical plate with chemical reaction and thermal radiation","authors":"Richa Deb Dowerah, Nazibuddin Ahmed, Hiren Deka","doi":"10.1002/htj.23057","DOIUrl":null,"url":null,"abstract":"<p>The current work is interested on investigating the impacts of thermal radiation, chemical reaction, and absorption radiation of a hydromagnetic convection-free mass and heat transfer flow in case of an electrically conducting fluid that passes through a vertical plate moving impulsively. The analytical solutions of the governing momentum, energy, and species concentration equations with the initial and boundary conditions are obtained by the Laplace transformation technique. Graphs for fluid characteristics are used to analyze the impact of changing parametric quantities such as <i>M, N, Sc, Kc, Q, Gr, Gm</i>, and <i>t</i> on the temperature, velocity, concentration, and Sherwood number. We derive the engineering curiosity expressions for the Nusselt number and stress, and at the end, we tabulate and discuss the consequences of new parameters. The magnetic field effect and the chemical reaction are seen to diminish the fluid velocity and concentration, respectively, but in contrast, the absorption radiation effect is seen to accelerate both velocity and temperature. It is closely studied that the Nusselt number and skin friction values for hydrogen consistently exceed those for carbon monoxide.</p>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"53 6","pages":"2689-2711"},"PeriodicalIF":2.8000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.23057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The current work is interested on investigating the impacts of thermal radiation, chemical reaction, and absorption radiation of a hydromagnetic convection-free mass and heat transfer flow in case of an electrically conducting fluid that passes through a vertical plate moving impulsively. The analytical solutions of the governing momentum, energy, and species concentration equations with the initial and boundary conditions are obtained by the Laplace transformation technique. Graphs for fluid characteristics are used to analyze the impact of changing parametric quantities such as M, N, Sc, Kc, Q, Gr, Gm, and t on the temperature, velocity, concentration, and Sherwood number. We derive the engineering curiosity expressions for the Nusselt number and stress, and at the end, we tabulate and discuss the consequences of new parameters. The magnetic field effect and the chemical reaction are seen to diminish the fluid velocity and concentration, respectively, but in contrast, the absorption radiation effect is seen to accelerate both velocity and temperature. It is closely studied that the Nusselt number and skin friction values for hydrogen consistently exceed those for carbon monoxide.
目前的工作主要研究在导电流体通过垂直板冲动运动的情况下,热辐射、化学反应和吸收辐射对无水磁性对流的传质传热流的影响。通过拉普拉斯变换技术获得了初始条件和边界条件下的动量、能量和物种浓度方程的解析解。流体特性曲线图用于分析改变 M、N、Sc、Kc、Q、Gr、Gm 和 t 等参数量对温度、速度、浓度和舍伍德数的影响。我们推导出了努塞尔特数和应力的工程奇异表达式,并在最后列表讨论了新参数的后果。磁场效应和化学反应分别减小了流体的速度和浓度,相反,吸收辐射效应则加快了速度和温度。经过仔细研究发现,氢气的努塞尔特数和皮肤摩擦值一直超过一氧化碳。